
Lecture 24: Optimization

Objectives:

(24.1) Use calculus techniques to solve application problems involving optimization.

Optimization

Optimization problems are application problems that require us to find the maximum or minimum values of
a function. These kinds of problems are among the most important of applied mathematics.

We will use the following steps to solve optimization problems.

Step 1 - Identify all given information and all information to be determined. Name and define all necessary
variables. Sketch a picture or diagram (if appropriate).

Step 2 - Determine the objective function (i.e the function to be maximized or minimized).

Step 3 - Determine the constraint equation(s), if any.

Step 4 - Use the constraint equation(s) to reduce the objective function to a single-variable function.

Step 5 - Determine the domain of the single-variable objective function.

Step 6 - Use calculus techniques to find the desired maximum or minimum values.

Not every one of these steps will be required for every optimization problem, Nonetheless, the steps
provide a pretty thorough framework, and we should think them through with each problem.

Example 1 Find two nonnegative numbers whose sum is 20 and whose product is as great as possible.

Let x and y represent the two nonnegative numbers. Our objective is to maximize the product
P = xy subject to the constraint x + y = 20. We must first reduce the two-variable objective
function, P = xy, to a function of a single variable.

x + y = 20 =⇒ y = 20 − x

P = xy =⇒ P (x) = x(20 − x) = 20x − x2

As a polynomial function, P is defined for all real numbers. However, in the context of this
particular problem, x must be between 0 and 20 (inclusive). Our goal, then, is to find the
maximum value of P (x) = 20x − x2 on the closed and bounded interval [0, 20]. We use the
techniques of Lecture 18.

P ′(x) = 20 − 2x = 2(10 − x)

The only critical number of P is x = 10. Next we evaluate P at the critical number and the
domain endpoints.

x 0 10 20
P (x) 0 100 0

P (x) is a maximum when x = 10, and the maximum value is P (10) = 100. The two nonneg-
ative numbers we’re looking for are x = 10 and y = 20 − 10 = 10.

Example 2 A farmer intends to construct a rectangular pen that will be divided down the middle into
two equal-sized pens. If the farmer has 500 ft of fencing material, find the dimensions of the rectangular pen
that will have maximum area.

Let x and y represent the length and width of each of the smaller sections of the rectangular pen
(see figure below).
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Our objective is to maximize the area of the pen, A = 2xy, subject to the constraint that
the perimeter is 500 ft, 4x + 3y = 500. We now use the constraint equation to reduce the
objective function to a single-variable function.

4x + 3y = 500 =⇒ y =
500 − 4x

3

A = 2xy =⇒ A(x) = 2x ·

(

500 − 4x

3

)

=
1000

3
x −

8

3
x2

In the context of the problem, we must have 0 < x < 125. So our task is to find the maximum

value of A(x) =
1000

3
x −

8

3
x2 on the interval (0, 125).

A′(x) =
1000

3
−

16

3
x = 0 =⇒ x =

1000

16
= 62.5

The only critical number is x = 62.5. Since A′′(x) = −
16

3
, the graph of A is concave up on

(0, 125). Therefore x = 62.5 gives us our required maximum. The dimensions that maximize
the area are

x = 62.5 ft and y =
500 − 4(62.5)

3
= 83.3 ft.

Example 3 Equal-sized squares will be cut from the corners of a 12 in by 12 in piece of sheet metal. The
sides will then be turned up to form an open-top box. Find the dimensions of the box with the greatest
volume.

Let x be the length and width of the square cut from each corner. Let y represent the remaining
length and width along each side (see figure below).

x y x

Once the corners are removed and the sides are folded up, the volume of the box will be
V = xy2. Our problem is to maximize V = xy2 subject to 2x + y = 12.

2x + y = 12 =⇒ x =
12 − y

2
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V = xy2 =⇒ V (y) =

(

12 − y

2

)

y2 = 6y2
−

1

2
y3

The feasible domain of the volume function is 0 ≤ y ≤ 12. Our task is to maximize V (y) on
the closed and bounded interval [0, 12].

V ′(y) = 12y −
3

2
y2 = 0 =⇒ y = 0, y = 8

We now evaluate V at critical numbers and domain endpoints.

y 0 8 12
V (y) 0 128 0

The maximum volume occurs when y = 8. This makes the height of the box equal to

x =
12 − 8

2
= 2. Therefore the dimensions of the box of maximum volume are

8 in × 8 in × 2 in.

Example 4 A manufacturer is designing a 1000 cm3 can that has the shape of a closed right circular
cylinder. What dimensions will produce a can with the minimum surface area?

Let r and h represent the radius and height of the can, respectively. The objective is to minimize
the surface area (including the top and bottom),

S = 2πr2 + 2πrh

subject to the volume being 1000,
πr2h = 1000.

The details are omitted, but we should find that r ≈ 5.42 cm and h ≈ 10.84 cm.
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