
Lecture 29: Area, lower sums, and upper sums

Objectives:

(29.1) Use rectangles to approximate the area of a bounded region under the graph of a function.

(29.2) Use upper and lower sums to approximate area.

Areas by rectangles

In this lecture we will begin our study of area under a curve. This will lead us down the path toward the
definite integral and the Fundamental Theorem of Calculus, but those are several lectures away. For now,
let’s consider the following problem.

Problem: Use rectangles of equal base length to approximate the area of the region bounded by
the graphs of f(x) = 6− x2, y = 0, x = 0, and x = 2. The bounded region is shown below.
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Solution 1 Solve the problem above by using 2 rectangles that lie entirely under the curve.

Since the two rectangles must have equal base lengths, the length will be

∆x =
2− 0

2
= 1.

The rectangles are supposed to lie entirely under the curve. Therefore, the best such ap-
proximation will come from rectangles that just reach high enough to touch the graph of
f(x) = 6 − x2. The rectangles are shown below. Because of the shape of the curve, the
heights of the rectangles are determined by the values of f(x) at the rectangles’ right sides.
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The area of the region can now be approximated by computing the sum of the areas of the
rectangles:

Area ≈ Area of 1st rectangle + Area of 2nd rectangle

or
Area ≈ 1 · f(1) + 1 · f(2) = 5 + 2 = 7.

Because the rectangles lie entirely below the curve, we will call this a lower sum. Our lower sum
under-estimates the area of the region. After letting c1 = 1 and c2 = 2, notice that our area
approximation has the form

Area ≈

2
∑

k=1

f(ck)∆x.

Solution 2 Solve the problem above by using 4 rectangles that lie entirely under the curve.

If we use 4 rectangles of equal base length, we have

∆x =
2− 0

4
=

1

2
= 0.5.

As above, the heights of the rectangles are determined by the function values at the rectangles’
right sides.
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If we let c1 = 0.5, c2 = 1, c3 = 1.5 and c4 = 2, then our area approximation has the form

Area ≈

4
∑

k=1

f(ck)∆x

or
Area ≈ 0.5 · (f(0.5) + f(1) + f(1.5) + f(2)) = 8.25.

Once again this is a lower sum, and it under-estimates the actual area of the region.

Solution 3 Solve the problem above by using 4 rectangles that lie entirely above the curve.

As above, we have

∆x =
2− 0

4
=

1

2
= 0.5.

In this case, however, the heights of the rectangles are determined by the function values at
the rectangles’ left sides.
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If we let c1 = 0, c2 = 0.5, c3 = 1 and c4 = 1.5, then our area approximation has the form

Area ≈

4
∑

k=1

f(ck)∆x

or
Area ≈ 0.5 · (f(0) + f(0.5) + f(1) + f(1.5)) = 10.25.

This time we have computed an upper sum. It over-estimates the actual area of the region.

By using the GeoGebra applet available at http://stevekifowit.com/geo_apps, we can
experiment with the lower and upper sums associated with f(x) = 6− x2 on [0, 2].

Solution 4 Instead of using a fixed number of rectangles, derive a formula that gives the lower sum
associated with n rectangles of equal base length.

This is a tough problem! First, we determine the rectangle base length:

∆x =
2− 0

n
=

2

n
.

The heights of the rectangles will be determined by the values of f(x) at the right sides of
the rectangles. The right sides will occur at the following x-values:

2

n
,
4

n
,
6

n
, . . . ,

2n

n
.

Because we will be evaluating f at these values, we need a general formula for right-hand side
of the kth rectangle. In this case, it is easy to see that the right side of the kth rectangle
occurs at

x = ck =
2k

n
, for k = 1, 2, 3, . . . n.

The area approximation is now given by

Area ≈ LS(n) =

n
∑

k=1

f(ck)∆x =

n
∑

k=1

[

6−

(

2k

n

)2
]

2

n
.

Instead of taking the time to algebraically simplify this expression, we will let a CAS do the
work for us. According to Wolfram Alpha, using sum (6-(2*k/n)^2)*2/n, k=1 to n,

LS(n) =

n
∑

k=1

[

6−

(

2k

n

)2
]

2

n
=

4(7n2 − 3n− 1)

3n2
.

Notice the LS(2) = 7 and LS(4) = 8.25 as we computed above.
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Solution 5 Use an approach similar to that of Solution 4 to derive a formula that gives the upper sum
associated with n rectangles of equal base length.

As above the rectangle base length is

∆x =
2− 0

n
=

2

n
.

In this case, the heights of the rectangles will be determined by the values of f(x) at the left
sides of the rectangles. The left sides will occur at the following x-values:

0

n
,
2

n
,
4

n
, . . . ,

2n− 2

n
.

The left side of the kth rectangle is described by the formula

x = ck =
2k − 2

n
, for k = 1, 2, 3, . . . , n.

The area approximation is now given by

Area ≈ US(n) =

n
∑

k=1

f(ck)∆x =

n
∑

k=1

[

6−

(

2k − 2

n

)2
]

2

n
.

According to Wolfram Alpha, using sum (6-(2*k-2)^2/n^2)*2/n, k=1 to n,

US(n) =

n
∑

k=1

[

6−

(

2k − 2

n

)2
]

2

n
=

4(7n2 + 3n− 1)

3n2
.

Notice the US(4) = 10.25 as we computed above.

Lower and upper sums

At this point we’ll set aside the problem from above and focus on lower and upper sums in general.
Suppose f is a nonnegative, continuous function on the interval [a, b]. Partition [a, b] into n subintervals

of equal length:

∆x =
b− a

n
.

The endpoints of the subintervals are described as follows:

a = x0 < x1 = a+∆x < x2 = a+ 2∆x < · · · < xk = a+ k∆x < · · · < xn = a+ n∆x = b.

The kth subinterval is the subinterval that ends at point xk, namely [xk−1, xk]. On each subinterval, define
mk and Mk as follows:

mk = x-value at which f(x) attains a minimum on [xk−1, xk]

Mk = x-value at which f(x) attains a maximum on [xk−1, xk]

Notice that, since f is a continuous function, mk and Mk must exist on each subinterval. It now follows that
the lower sum for f on [a, b] using n rectangles is given by

LS(n) =

n
∑

k=1

f(mk)∆x

and the corresponding upper sum is given by

US(n) =

n
∑

k=1

f(Mk)∆x.
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Theorem 1 — Limits of lower and upper sums

Suppose f is a nonnegative, continuous function on [a, b]. Let n be a positive integer, and define the
lower sum, LS(n), and the upper sum, US(n), as above. Then

lim
n→∞

LS(n) = lim
n→∞

US(n).

Remember that the lower and upper sums give approximations for the area of the region bounded by the
graphs of y = f(x), y = 0, x = a, and x = b. It is clear from their definitions that

LS(n) ≤ Actual area ≤ US(n)

for each positive integer n. It follows from the squeeze theorem (Lecture 5) that the actual area must be
equal to the limit of the lower or upper sums.

Example 1 Referring back to Solution 4 or Solution 5 (above), find the actual area of the region bounded
by the graphs of y = 6− x2, y = 0, x = a, and x = b.

Area = lim
n→∞

LS(n) = lim
n→∞

4(7n2 − 3n− 1)

3n2
=

28

3

Just as a check, notice that we also have

lim
n→∞

US(n) = lim
n→∞

4(7n2 + 3n− 1)

3n2
=

28

3
.

We now make one more observation. Referring back to the definitions of the lower and upper sums, for
each k, let ck be any x-value chosen from the kth subinterval. It follows that

f(mk) ≤ f(ck) ≤ f(Mk), for k = 1, 2, 3, . . . n.

Therefore, we must have

LS(n) =

n
∑

k=1

f(mk)∆x ≤

n
∑

k=1

f(ck)∆x ≤

n
∑

k=1

f(Mk)∆x = US(n).

The squeeze theorem applies once again to give the following result.

Theorem 2 — Area as a limit

Suppose f is a nonnegative, continuous function on [a, b]. Partition [a, b] into n subintervals of equal
length, ∆x = (b− a)/n. For each k from 1 to n, let ck be any point in the kth subinterval. The area
of the region bounded by the graph of f , the x-axis, and the vertical lines x = a and x = b is given
by

Area = lim
n→∞

n
∑

k=1

f(ck)∆x.
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