1. Near the point $(2,4)$, the function $y=x^{2}$ can be approximated quite well by a linear function whose graph has slope 4. Find an equation for that linear function.
(a) $y=4 x+4$
(b) $y=4+4(x-2)$
(c) $2 x+4 y=4$
(d) $y=x^{2}+4 x+4$

2. Find an equation of the line perpendicular to the graph of $f(x)=-3 x+5$ and passing through the point $(1,3)$. Write your result in modified point-slope form.
(a) $y=\frac{1}{3} x+3$
(b) $y=3-3(x-1)$
(c) $y=1+\frac{1}{3}(x-3)$
(d) $y=3+\frac{1}{3}(x-1)$
3. Find the single point of intersection of the graphs of $f(x)=x^{3}+4 x^{2}-2 x$ and $g(x)=x^{2}-3 x-3$.
(Hint: Factor by grouping.)
(a) $(1,3)$
(b) $(-1,6)$
(c) $(-3,15)$
(d) $(3,-3)$
4. Solve for x. Factor first, then expand and factor again.

$$
x^{3}(18 x)-9\left(x^{2}-3\right)\left(3 x^{2}\right)=0
$$

(a) $x=0, \quad x=3, \quad x=-3$
(b) $x=2, \quad x=-2$
(c) $x=2, \quad x=-2, \quad x=3, \quad x=-3$
(d) $x=0, \quad x=3, \quad x=2$

Solution
5. Rationalize the numerator and simplify: $\frac{\sqrt{x+3}-\sqrt{3}}{x}$
(a) $\frac{1}{\sqrt{x+3}-\sqrt{3}}$
(b) $\frac{1}{\sqrt{x}}$
(c) $\frac{x}{\sqrt{x^{2}+3 x}+\sqrt{3}}$
(d) $\frac{1}{\sqrt{x+3}+\sqrt{3}}$

Problem 1 - The answer is (b).

The line with slope 4 passing through the point $(2,4)$ is given in modified point-slope form by

$$
y=4+4(x-2)
$$

Problem 2 - The answer is (d).

The slope of a line perpendicular to $y=-3 x+5$ is $m=1 / 3$ (slopes are opposite reciprocals). The line with slope $1 / 3$ passing through $(1,3)$ is

$$
y=3+\frac{1}{3}(x-1)
$$

Problem 3 - The answer is (c).

$$
\begin{gathered}
x^{3}+4 x^{2}-2 x=x^{2}-3 x-3 \\
x^{3}+3 x^{2}+x+3=0 \\
(x+3)\left(x^{2}+1\right)=0 \\
x=-3 \\
f(-3)=g(-3)=15
\end{gathered}
$$

Back to Problem 3

Problem 4 - The answer is (a).

$$
\begin{gathered}
x^{3}(18 x)-9\left(x^{2}-3\right)\left(3 x^{2}\right)=0 \\
9 x^{2}\left(2 x^{2}-3 x^{2}+9\right)=0 \\
-9 x^{2}\left(x^{2}-9\right)=0 \\
-9 x^{2}(x-3)(x+3)=0 \\
x=0, \quad x=0, \quad x=3, \quad x=-3
\end{gathered}
$$

Back to Problem 4

Problem 5 - The answer is (d).

$$
\begin{gathered}
\frac{\sqrt{x+3}-\sqrt{3}}{x} \cdot \frac{\sqrt{x+3}+\sqrt{3}}{\sqrt{x+3}+\sqrt{3}}=\frac{(x+3)-3}{x(\sqrt{x+3}+\sqrt{3})} \\
\frac{x}{x(\sqrt{x+3}+\sqrt{3})}=\frac{1}{\sqrt{x+3}+\sqrt{3}}
\end{gathered}
$$

