1. The graph of the function f is shown here. At how many points in the interval $(-4,4)$ is the derivative of f not defined?
(a) 0
(b) 1
(c) 2
(d) 3

Solution
2. The graph of the function f is shown here. Which one of these is true of the derivative of f at the indicated point?
(a) It is positive.
(b) It is negative.
(c) It is zero.
(d) It is not defined.

3. The graph of the function f is shown here. Which one of these is true of the derivative of f at the indicated point?
(a) It is positive.
(b) It is negative.
(c) It is zero.
(d) It is not defined.

4. The graph of the function f is shown here. Which one of these is a good estimate for the derivative of f at the indicated point?
(a) 3
(b) 0
(c) 1
(d) It is not defined.

Solution
5. The graph of the function f is shown here. At how many points in the interval $(-4,4)$ is the derivative of f equal to zero?
(a) 4
(b) 3
(c) 2
(d) 1

Solution

Problem 1 - The answer is (c).

At the points where $x=-1$ and $x=2$, the tangent lines from the left are not the same as the tangent lines from the right. A function is not differentiable at points where the graph has sharp points.

Problem 2 - The answer is (a).

At the indicated point, the tangent line will have positive slope.

Problem 3 - The answer is (b).

At the indicated point, the tangent line will have negative slope.

Problem 4 - The answer is (c).

On the interval from $x=2$ to $x=4$, the graph is a line. Therefore the graph is its own tangent line, and at the indicated point, the slope is 1 .

Problem 5 - The answer is (c).

The graph has horizontal tangent lines at two different places: $x=-3$ and $x=0$.

