- 1. The graph of the function f is shown here. At how many points in the interval (-4,4) is the derivative of f not defined?
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3

- 2. The graph of the function f is shown here. Which one of these is true of the derivative of f at the indicated point?
 - (a) It is positive.
 - (b) It is negative.
 - (c) It is zero.
 - (d) It is not defined.

- 3. The graph of the function f is shown here. Which one of these is true of the derivative of f at the indicated point?
 - (a) It is positive.
 - (b) It is negative.
 - (c) It is zero.
 - (d) It is not defined.

- 4. The graph of the function f is shown here. Which one of these is a good estimate for the derivative of f at the indicated point?
 - (a) 3
 - (b) 0
 - (c) 1
 - (d) It is not defined.

- 5. The graph of the function f is shown here. At how many points in the interval (-4,4) is the derivative of f equal to zero?
 - (a) 4
 - (b) 3
 - (c) 2
 - (d) 1

Problem 1 — The answer is (c).

At the points where x=-1 and x=2, the tangent lines from the left are not the same as the tangent lines from the right. A function is not differentiable at points where the graph has sharp points.

Problem 2 — The answer is (a).

At the indicated point, the tangent line will have positive slope.

Problem 3 — The answer is (b).

At the indicated point, the tangent line will have negative slope.

Problem 4 — The answer is (c).

On the interval from x = 2 to x = 4, the graph is a line. Therefore the graph is its own tangent line, and at the indicated point, the slope is 1.

Problem 5 — The answer is (c).

The graph has horizontal tangent lines at two different places: x = -3 and x = 0.