1. Differentiate. Do not simplify. $\frac{d}{d x}\left[\frac{\tan x}{x^{4}+5 x^{2}}\right]$
(a) $\frac{\sec ^{2} x}{4 x^{3}+10 x}$
(b) $\frac{(\tan x)\left(4 x^{3}+10 x\right)-\left(x^{4}+5 x^{2}\right)\left(\sec ^{2} x\right)}{\left(x^{4}+5 x^{2}\right)^{2}}$
(c) $\frac{\left(x^{4}+5 x^{2}\right)\left(\sec ^{2} x\right)-(\tan x)\left(4 x^{3}+10 x\right)}{\left(x^{4}+5 x^{2}\right)^{2}}$
(d) $\frac{\left(x^{4}+5 x^{2}\right)\left(\sec ^{2} x\right)-(\tan x)\left(4 x^{3}+10 x\right)}{\tan ^{2} x}$

Solution
2. Differentiate. Do not simplify. $\frac{d}{d x}\left[\left(x^{2}+2 x+3\right) \cos x\right]$
(a) $(2 x+2) \cos x-\left(x^{2}+2 x+3\right) \sin x$
(b) $-(2 x+2) \sin x$
(c) $\left(x^{2}+2 x+3\right) \cos x-(2 x+2) \sin x$
(d) $\left(x^{2}+2 x+3\right)(-\sin x)+\left(x^{2}+2 x+3\right)(\cos x)$

Solution
3. Which one of these is NOT the chain rule?
(a) $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$
(b) $\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$
(c) $\frac{d}{d x}(f \circ g)(x)=\left(f \circ g^{\prime}\right)(x) \cdot g^{\prime}(x)$
(d) $\frac{d}{d x}[f(x) g(x)]=f^{\prime}\left(g^{\prime}(x)\right)+g^{\prime}(f(x))$

Solution
4. Find the slope of the line tangent to the graph of $y=\sqrt{x^{3}-x-2}$ at the point where $x=2$.
(a) 11
(b) $11 / 4$
(c) $\sqrt{11} / 22$
(d) The slope is not defined.
5. Differentiate. $\frac{d}{d \theta} \sin ^{2}(3 \pi \theta)$
(a) $6 \pi \sin (3 \pi \theta) \cos (3 \pi \theta)$
(b) $6 \pi \cos (3 \pi \theta)$
(c) $2 \cos (3 \pi \theta)$
(d) $2 \sin (3 \pi \theta) \cos (3 \pi \theta)$

Problem 1 - The answer is (c).

Using the quotient rule, the derivative is
Low D High minus High D Low all over Low squared.

$$
\frac{d}{d x}\left[\frac{\tan x}{x^{4}+5 x^{2}}\right]=\frac{\left(x^{4}+5 x^{2}\right)\left(\sec ^{2} x\right)-(\tan x)\left(4 x^{3}+10 x\right)}{\left(x^{4}+5 x^{2}\right)^{2}}
$$

Problem 2 - The answer is (a).

Using the product rule,
$\frac{d}{d x}\left[\left(x^{2}+2 x+3\right) \cos x\right]=(2 x+2) \cos x+\left(x^{2}+2 x+3\right)(-\sin x)$

Problem 3 - The answer is (d).

Choices (a), (b), and (c) all are forms of the chain rule. Choice (d) looks a bit like the product rule, but the formula is not correct.

Problem 4 - The answer is (b).

The slope of the tangent line is given by the derivative.

$$
\begin{gathered}
\frac{d y}{d x}=\frac{1}{2}\left(x^{3}-x-2\right)^{-1 / 2}\left(3 x^{2}-1\right)=\frac{3 x^{2}-1}{2 \sqrt{x^{3}-x-2}} \\
\frac{d y}{d x} \text { at } 2=\frac{11}{4}
\end{gathered}
$$

Problem 5 - The answer is (a).

$$
\begin{gathered}
\frac{d}{d \theta} \sin ^{2}(3 \pi \theta)=2 \sin (3 \pi \theta) \cdot \frac{d}{d \theta} \sin (3 \pi \theta) \\
=2 \sin (3 \pi \theta) \cos (3 \pi \theta)(3 \pi)
\end{gathered}
$$

