Lecture 2: Review: Functions, Change, and Graphing

Objectives:
(2.1) Evaluate functions.
(2.2) Compute and interpret Δx and Δy.
(2.3) Sketch basic graphs by hand.

Functions

A function from a set A into a set B is a rule or correspondence that assigns to each element of A a single element of B. The set A is called the domain of the function - the domain is the set of all possible inputs. The set of all outputs is called the range of the function. The range is a subset of B, not necessarily all of B. A variable used to name a domain input is called an independent variable, while a variable used to name a range output is called a dependent variable.

Functions can be defined in many ways: in words; with diagrams, tables, or graphs; with equations; etc. Most of the functions we will study will be defined algebraically - the correspondence defining the function will be described by an equation.

Notice that the domain of a function is a defining characteristic of the function. The domain must be given! The same rule applied on different domains defines different functions. We will adopt the following convention:

If the domain of a function is not explicitly given, we will assume the domain is the set of all real numbers that make sense in the context of the function's definition.

Example 1 Let $f(x)=\frac{1}{1-x}$.

1. Evaluate $f\left(\frac{1}{2}\right)$.
2. Find all x-values for which $f(x)=-5$.
3. Find the domain and range of f.

Solutions omitted.

Example 2 If Fred sells his Whatchies for x dollars apiece, he makes a profit of $p(x)=x^{2}+2 x-4$ dollars for each one he sells.

1. What is the domain of p ?

Since x represents a number of dollars, it only makes sense that $x \geq 0$.
2. Complete the square to find the range of p.

$$
x^{2}+2 x-4=(x+1)^{2}-5 \geq-5
$$

3. Simplify and interpret $p(x+1)$.
$p(x+1)$ is Fred's profit per Watchie after selling them for $x+1$ dollars apiece. This may be of interest to Fred if he is considering raising his price by $\$ 1$.

$$
p(x+1)=(x+1)^{2}+2(x+1)-4=x^{2}+2 x+1+2 x+2-4=x^{2}+4 x-1
$$

Notice that $p(x+1)-p(x)=2 x+3$ is Fred's change in profit per Watchie if he raises his price $\$ 1$.

Change

If the value of x changes from $x=x_{\text {old }}$ to $x=x_{n e w}$, the change in x is denoted by Δx :

$$
\Delta x=x_{\text {new }}-x_{\text {old }} \quad \text { and } \quad x_{\text {new }}=x_{\text {old }}+\Delta x .
$$

Instead of using the old and new subscripts, we will often simply think about a change from x to $x+\Delta x$ (or from x to $x+h$).

If f is a function and $y=f(x)$, then

$$
\Delta y=y_{\text {new }}-y_{\text {old }}=f\left(x_{\text {new }}\right)-f\left(x_{\text {old }}\right)=f(x+\Delta x)-f(x) .
$$

Throughout the course, we will be interested in the relationship between Δx and Δy.

Example 3 Let $y=g(x)=x^{3}-2 x$. Simplify the expression for Δy.

$$
\begin{gathered}
\Delta y=g(x+\Delta x)-g(x)=\left[(x+\Delta x)^{3}-2(x+\Delta x)\right]-\left[x^{3}-2 x\right] \\
=x^{3}+3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3}-2 x-2 \Delta x-x^{3}+2 x=3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3}-2 \Delta x
\end{gathered}
$$

Example 4 Let $y=f(x)=\frac{1}{x}$. Simplify the expression for Δy. Then simplify the expression for $\Delta y / \Delta x$.

$$
\begin{aligned}
\Delta y=f(x+\Delta x)-f(x) & =\frac{1}{x+\Delta x}-\frac{1}{x}=\frac{x}{x(x+\Delta x)}-\frac{x+\Delta x}{x(x+\Delta x)}=\frac{-\Delta x}{x(x+\Delta x)} \\
\frac{\Delta y}{\Delta x} & =\frac{1}{\Delta x}\left(\frac{-\Delta x}{x(x+\Delta x)}\right)=\frac{-1}{x(x+\Delta x)}
\end{aligned}
$$

Graphing without the calculator

Even though we will often make use of the graphing calculator, it is important to have basic graphing skills. When we need to have a "rough" graph of a basic function, we can normally get it very quickly without the calculator.

Here is a short list of the graphing skills that we are all expected to have:

- Know the graphs of basic functions such as $y=m x+b, y=x^{n}, y=\sqrt{x}, y=|x|, y=\sin x, y=\cos x$, and $y=\tan x$.
- Know the general shape of the graph of a polynomial of degree n.
- Use x - and y-intercepts when graphing.
- Use vertical \& horizontal translations and vertical \& horizontal flips.
- Use symmetry.
- A function is even if $f(-x)=f(x)$. The graph of an even function is symmetric about the y-axis.
- A function is odd if $f(-x)=-f(x)$. The graph of an odd function is symmetric about the origin.
- Know a little bit about horizontal and vertical asymptotes.

Example 4 Explain how the graph of $y=(x+1)^{2}-3$ can be obtained from the graph of $y=x^{2}$. Start with the graph of $y=x^{2}$ and shift it left 1 unit and down 3 units.

Example 5 Sketch the graph of $f(x)=(x-4)(x+2)$. Solution omitted.

Example 6 Sketch the graph of $g(x)=|\sin 2 \pi x|$.
Solution omitted.

