Lecture 6: One-sided limits

Objectives:
(6.1) Estimate and evaluate one-sided limits.
(6.2) Use one-sided limits to justify that a limit does not exist

One-sided limits

We saw earlier that a limit fails to exist when the limit from the right is not equal to the limit from the left. It is time for us to formalize the idea of a one-sided limit.

If f is defined on an interval of the form (a, c), then the limit of f as x approaches c from the left (i.e. from values less than c) is denoted by

$$
\lim _{x \rightarrow c^{-}} f(x)
$$

Similarly, if f is defined on an interval of the form (c, b), then the limit of f as x approaches c from the right (i.e. from values greater than c) is denoted by

$$
\lim _{x \rightarrow c^{+}} f(x)
$$

Of course one-sided limits may exist at a point when the regular two-sided limit does not. For example,

$$
\lim _{x \rightarrow 0} \sqrt{x} \text { DNE }
$$

because \sqrt{x} is not defined on both sides of $x=0$. However, since \sqrt{x} is defined to the right of $x=0$, we have no problem with a limit from the right:

$$
\lim _{x \rightarrow 0^{+}} \sqrt{x}=0
$$

Example 1 The graph of $y=f(x)$ is shown below. Estimate each of the following for $c=-2, c=0$, and $c=4$.

$$
\lim _{x \rightarrow c^{-}} f(x), \quad \lim _{x \rightarrow c^{+}} f(x), \quad \lim _{x \rightarrow c} f(x), \quad f(c)
$$

[^0]
The relationship between one- and two-sided limits

It should be intuitively clear that if a normal, two-sided limit exists at a point, then both one-sided limits exist and are equal. This idea is important enough to state as a theorem.

Theorem 1 - One- and two-sided limits

Suppose f is defined on an open interval containing c, except possibly at c. Then

$$
\lim _{x \rightarrow c} f(x)=L
$$

if and only if

$$
\lim _{x \rightarrow c^{-}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c^{+}} f(x)=L
$$

One consequence of this theorem is that we can evaluate one-sided limits using the same techniques we used to evaluate two-sided limits.

Example 2 Evaluate the limit: $\lim _{x \rightarrow 3^{+}} x^{2} \sin ^{2} \pi x$.
The limit at $x=3$ exists and can be determined by direct substitution. Therefore, both the left and right limits exist and can also be determined by direct substitution.

$$
\lim _{x \rightarrow 3^{+}} x^{2} \sin ^{2} \pi x=3^{2} \sin ^{2}(3 \pi)=(9)(0)=0
$$

Example 3 Evaluate the limit: $\lim _{h \rightarrow 1^{-}} \frac{1-h}{\sqrt{1-h}}$.
First notice that $\sqrt{1-h}$ is only defined to the left of $h=1$, so we can only consider the limit from the left. Direct substitution of $h=1$ yields the indeterminate form $0 / 0$. As usual, we conclude nothing without doing more work.

$$
\lim _{h \rightarrow 1^{-}} \frac{1-h}{\sqrt{1-h}}=\lim _{h \rightarrow 1^{-}} \frac{\sqrt{1-h} \sqrt{1 / H / h / h}}{\sqrt{/ 1 / H / h}}=\lim _{h \rightarrow 1^{-}} \sqrt{1-h}=\sqrt{0}=0
$$

Example 4 Consider the following piece-wise defined function:

$$
g(x)= \begin{cases}2 x+5, & x<3 \\ x^{3}-8 x+1, & x>3\end{cases}
$$

1. Find the limit: $\lim _{x \rightarrow 3^{-}} g(x)$

The function g is defined in two pieces with the breakpoint at $x=3$, which happens to be the limit point. In order to evaluate the limit from the left at $x=3$, we must use the piece of the function that defines g to the left of $x=3$. Using that piece, direct substitution gives

$$
\lim _{x \rightarrow 3^{-}} g(x)=\lim _{x \rightarrow 3}(2 x+5)=11
$$

2. Find the limit: $\lim _{x \rightarrow 3^{+}} g(x)$

Reasoning as above,

$$
\lim _{x \rightarrow 3^{+}} g(x)=\lim _{x \rightarrow 3}\left(x^{3}-8 x+1\right)=4
$$

3. Find the limit: $\lim _{x \rightarrow 3} g(x)$

Since the limit from the left of $x=3$ does not equal the limit from the right, the two-sided limit at $x=3$ does not exist.
4. Find the limit: $\lim _{x \rightarrow 0} g(x)$

Since the limit point at $x=0$ is to the left of the function's breakpoint at $x=3$, we need only consider the piece of the function that defines g to the left of 3 .

$$
\lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0}(2 x+5)=5
$$

In order to evaluate one-sided limits involving absolute value, we will often have to rewrite the expression by using the definition of the absolute value function:

$$
|x|=\left\{\begin{aligned}
x, & x \geq 0 \\
-x, & x<0
\end{aligned}\right.
$$

Example 5 Evaluate $\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}$ and $\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}$.
In each case, direct substitution yields the indeterminate form $0 / 0$. We use the piece-wise definition of $|x|$.
To the left of $x=0$, we have

$$
\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=\lim _{x \rightarrow 0} \frac{-x}{x}=\lim _{x \rightarrow 0}-1=-1
$$

To the right of $x=0$, we have

$$
\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=\lim _{x \rightarrow 0} \frac{x}{x}=\lim _{x \rightarrow 0} 1=1
$$

Example 6 Evaluate $\lim _{x \rightarrow 2^{-}} \frac{|x-2|\left(x^{2}+x\right)}{x-2}$ and $\lim _{x \rightarrow 2^{+}} \frac{|x-2|\left(x^{2}+x\right)}{x-2}$.
In each case, direct substitution yields the indeterminate form $0 / 0$. We use the piece-wise definition of $|x|$.
To the left of $x=2$, we have

$$
\lim _{x \rightarrow 2^{-}} \frac{|x-2|\left(x^{2}+x\right)}{x-2}=\lim _{x \rightarrow 2} \frac{-(x-2)\left(x^{2}+x\right)}{x-2}=\lim _{x \rightarrow 2}-\left(x^{2}+x\right)=-6
$$

To the right of $x=2$, we have

$$
\lim _{x \rightarrow 2^{+}} \frac{|x-2|\left(x^{2}+x\right)}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+x\right)}{x-2}=\lim _{x \rightarrow 2}\left(x^{2}+x\right)=6 .
$$

Example 7 Sketch the graph of a function f such that

- $\lim _{x \rightarrow 1^{-}} f(x)=2$
- $\lim _{x \rightarrow 1^{+}} f(x)=1$
- $f(1)=0$
- $\lim _{x \rightarrow-1^{+}} f(x)=-2$
- $\lim _{x \rightarrow-1} f(x)$ exists

Solution omitted. Answers vary.

[^0]: Solution omitted.

