Formal Limit Definition of Derivative

The derivative of f at x is given by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided this limit exists. If $f^{\prime}(x)$ exists, we say f is differentiable at x. The process of finding the derivative of a function is called differentiation.

Direct substitution of $h=0$ into the definition will always yield the indeterminate form $0 / 0$. There will always be more work to do.

Common Ways Derivatives Fail to Exist
f is not differentiable at $x=c$ if

- f is discontinuous at $x=c$,
- the slope of the graph's tangent line from the left at $x=c$ is not equal to the slope of the tangent line from the right (i.e. the graph has a sharp point at $x=c$), or
- the tangent line at $x=c$ is vertical.

