Rolle's Theorem

Suppose f is continuous on $[a, b]$ and differentiable on (a, b). If $f(a)=f(b)$, then there exists a number c in (a, b) such that $f^{\prime}(c)=0$.

Mean Value Theorem

If f is continuous on $[a, b]$ and differentiable on (a, b), then there exists a number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} .
$$

Increasing/decreasing functions - Definition

Suppose the function f is defined on an interval I.

- If for any two points x_{1} and x_{2} in I,

$$
x_{1}<x_{2} \quad \Longrightarrow \quad f\left(x_{1}\right)<f\left(x_{2}\right),
$$

then f is increasing on I.

- If for any two points x_{1} and x_{2} in I,

$$
x_{1}<x_{2} \quad \Longrightarrow \quad f\left(x_{1}\right)>f\left(x_{2}\right),
$$

then f is decreasing on I.

Increasing/decreasing functions - Theorem

If f is differentiable at each point of (a, b) and the derivative is positive at each point, then f is increasing on (a, b).

If f is differentiable at each point of (a, b) and the derivative is negative at each point, then f is decreasing on (a, b).

