Suppose the function f is defined on an open interval containing the number c, but f need not be defined at c. If $f(x)$ can be made arbitrarily close to the number L by choosing x sufficiently close to, but different from, c then we say $f(x)$ approaches L as x approaches c. We write

$$
\lim _{x \rightarrow c} f(x)=L .
$$

Common ways limits fail to exist

- The limit from the left does not equal the limit from the right
- The function values grow without bound as the limit point is approached
- The function values continually oscillate and approach no fixed value
- The function is not defined on an open interval containing the limit point

