Functions that differ at a point

Suppose $f(x)=g(x)$ for all $x \neq c$ on an open interval containing
c. If $\lim _{x \rightarrow c} g(x)$ exists, then $\lim _{x \rightarrow c} f(x)$ also exists and

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x) .
$$

Squeeze Theorem

Suppose f, g, and h are functions for which

$$
g(x) \leq f(x) \leq h(x)
$$

for all x in an open interval containing c, except possibly at c. If

$$
\lim _{x \rightarrow c} g(x)=L \quad \text { and } \quad \lim _{x \rightarrow c} h(x)=L
$$

then f must have the same limit at c :

$$
\lim _{x \rightarrow c} f(x)=L
$$

Common ways to resolve 0/0 forms

1. Factor and cancel
2. Expand and simplify
3. Multiply by the conjugate and simplify
4. Get a common denominator and add (or subtract)
5. Use $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
6. Use the definition of absolute value
