1. Simple Interest Formulas

- $I=\operatorname{Pr} t$
- $A=P+$ Prt

2. Compound Interest Formula

- $A=P\left(1+\frac{r}{n}\right)^{n t}$

3. Effective Rate

- $E=\left(1+\frac{r}{n}\right)^{n}-1$

4. Annuity Formulas (Future value of payments)

- $A=\frac{R \cdot\left[\left(1+\frac{r}{n}\right)^{n t}-1\right]}{\left(\frac{r}{n}\right)}$
- $R=\frac{A \cdot\left(\frac{r}{n}\right)}{\left[\left(1+\frac{r}{n}\right)^{n t}-1\right]}$

5. Present value of future payments

- $P=\frac{R \cdot\left[1-\left(1+\frac{r}{n}\right)^{-n t}\right]}{\left(\frac{r}{n}\right)}$

6. Mortgage Formula (Payments for present value)

- $R=\frac{P \cdot\left(\frac{r}{n}\right)}{\left[1-\left(1+\frac{r}{n}\right)^{-n t}\right]}$

7. Counting Formulas

- Permuations of n objects: n !
- Permutations of r objects taken from $n: \quad{ }_{n} P_{r}=\frac{n!}{(n-r)!}$
- Permutations of n objects where some are alike: $\frac{n!}{n_{1}!n_{2}!\cdots n_{p}!}$
- Combinations of r objects taken from $n: \quad{ }_{n} C_{r}=\frac{n!}{(n-r)!r!}$

