Math 153 - Quiz 7 April 4, 2013

Name key Score

Show all work to receive full credit. Supply explanations when necessary.

1. (2 points) On any given night, there is a 13% chance that Sam will enjoy his dinner. In a week, what is the probably that Sam will enjoy his dinner at least once?

$$P(x \ge 1) = 1 - P(x = 0)$$

= 1-binomial cdf (7,0.13,0) \approx 60.3%

- 2. (6 points) Joe has been struggling with his classes. He has determined that the probability that he will pass any given test is 0.38. He has 7 tests left to take this semester.
 - (a) What is the probability that he will pass 4 of the tests?

Binomial
$$N = 7$$
 $p = 0.38$

(b) What is the probability that he will pass at least 4 of the tests?

$$P(x \ge 4) = 1 - P(x \le 3)$$

= 1-binomialcof(7,0.38,3) \approx 25.2%

(c) How many of the tests should he expect to pass?

(d) What would be an unusually large number of tests to pass?

$$\sigma = \sqrt{NPQ}$$

$$= \sqrt{7(0.38)(0.60)} \approx 1.38$$

$$\mu + 2\sigma \approx 5.22 \Rightarrow 67ESTS$$

3. (2 points) Suppose x is a random variable in a binomial distribution with q = 0.65 and n = 20. Compute $P(x \ge 12)$.

$$N = 30$$
 $q = 0.65 \Rightarrow p = 0.35$

$$P(x \ge 12) = 1 - P(x \le 11)$$

= 1 - binomial cdf (20, 0.35, 11)