<u>Math 157 - Test 3a</u>

November 20, 2013

Name Key Score ___

Show all work. Supply explanations when necessary.

1. (10 points) Find open intervals on which the graph of $f(x) = x^4 + x^3 - 3x^2 + 1$ is concave up/down. Also identify all points of inflection.

$$f'(x) = 4x^{3} + 3x^{3} - 6x$$

$$f''(x) = 12x^{3} + 6x - 6 = 6(2x^{2} + x - 1)$$

$$= 6(2x - 1)(x + 1) = 0$$

$$\Rightarrow x = \frac{1}{2} \text{ or } x = -1$$

Signs

of f''' f(-1)=-3 f(-1)=-3The graph of f is concave up on $(-\infty,-1)$ u $(\frac{1}{2},\infty)$ Concave down on $(-1,\frac{1}{2})$ (-1,-3) and $(\frac{1}{2},\frac{7}{16})$ are inflection pts.

2. (5 points) In solving an optimization problem, Joe found that x = 1 is a critical number of the function $P(x) = 2x + \frac{2}{x}$. Show that Joe's critical number minimizes P.

$$P'(x) = 2 - \frac{a}{x^2}$$

Notice that $X = 1$

Is a critical number

Since $P'(i) = 0$.

$$P''(x) = \frac{4}{x^3}$$

Since $P''(1) > 0$,
 $X = 1$ must give
A minimum.

3. (7 points) The revenue, in dollars, generated by selling x units of a certain product is given by $R(x) = 50xe^{-0.0025x}$. Use differentials to estimate the change in revenue as x changes from 1000 to 1050.

$$R'(x) = 50e^{-0.0025x} + 50xe^{-0.0025x} (-0.0025)$$
 $dR = R'(x)dx \Rightarrow \Delta R \approx R'(x)\Delta x$
 $X = 1000$
 $\Delta X = 50 \Rightarrow \Delta R \approx R'(1000) (50)$
 $= -307.8187$

IN COMPARISON, EXACT DR = -301.16

4. (11 points) A rancher has 200 feet of fencing to enclose two adjacent rectangular corrals (which share one common side). What dimensions should be used so that the enclosed area will be a maximum?

5. (3 points) Use the exponent laws to simplify each expression.

(a)
$$(5^7)(5^{-3}) = 5^{7-3} = 5^{4}$$

(b)
$$(e^3)^x = e^{3x}$$

6. (4 points) Use the logarithm laws to expand or condense each expression as appropriate.

(a)
$$3\log_2 x - 2\log_2(x-1) = \log_3 \left[\frac{x^3}{(x-1)^3} \right]$$

(b)
$$\ln\left(\frac{(x+1)^2}{y-1}\right) = 2 \ln(x+1) - \ln(y-1)$$

7. (3 points) Find the **exact** value of of each expression.

(a)
$$\log_6 36 = 2$$

Since $6 = 36$

(b)
$$e^{\ln \sqrt{5}} = \sqrt{5}$$

(c)
$$\ln e^{\pi} = \mathcal{M}$$

8. (5 points) Make a table of some values of the function $f(x) = 3^x$. Then plot points to sketch the graph.

	0 1
X	$f(x) = 3^x$
- a	19
-1	1/3
0	1
1	3
3	9

9. (9 points) Solve for x.

(a)
$$\ln x^3 = 6$$

$$h \times = 2$$

$$X = e^{2}$$

(b)
$$4e^{2x-3} - 5 = 0$$

 $4e^{2x-3} = 5$
 $e^{2x-3} = \frac{5}{4}$
 $2x-3 = M(\frac{5}{4})$

$$X = \frac{1}{a} \left(3 + \ln \left(\frac{5}{4} \right) \right)$$

$$\times \approx 1.61157$$

(c)
$$\ln x + \ln(x - 3) = 0$$

$$lm(x(x-3)) = 0$$

 $x(x-3) = 1$
 $x^{2}-3x-1 = 0$

4

$$X = \frac{3 \pm \sqrt{9 + 4}}{a} = \frac{3 \pm \sqrt{13}}{a}$$

$$X = \frac{3 + \sqrt{13}}{a} \approx 3.30$$

$$X = \frac{3 - \sqrt{13}}{a} \approx -0.30$$

No good! T NOT IN DOMAIN OF Y= lax

10. (6 points) Let $g(x) = 8x^5 - 5x^4 - 20x^3$. Without looking at the graph of g, determine whether the graph is concave up or concave down at the point where x = 1.

$$g'(x) = 40x^4 - 30x^3 - 60x^2$$

 $g''(x) = 160x^3 - 60x^3 - 120x$
 $g''(1) = 160 - 60 - 120 = -20 \Rightarrow (4raph 12 CD AT)$
 $X=1$

11. (12 points) Determine the derivative of each function. It may be helpful to use exponent laws, logarithm laws, or change-of-base formulas to simplify the functions before differentiation.

(a)
$$f(x) = (e^x)^2$$

$$f(x) = e^{3x} \qquad \qquad f'(x) = 3e^{3x}$$

(b)
$$g(t) = \ln[t^2(t+4)^3] = 2 \ln t + 3 \ln (t+4)$$

$$g'(t) = \frac{2}{t} + \frac{3}{t+4}$$

(c)
$$f(x) = \log_5 x = \frac{\ln x}{\ln 5}$$

$$f'(x) = \frac{1}{\ln 5} \frac{1}{x}$$

<u>Math 157 - Test 3b</u> November 20, 2013

Name Key Score

Show all work. Supply explanations when necessary. You must work individually on this exam.

1. (9 points) The revenue, in dollars, generated by selling x units of a certain product is given by $R(x) = 50xe^{-0.0025x}$. Determine the maximum revenue.

$$R'(x) = 50e^{-0.0035x} + 50xe^{-0.0035x} (-0.0035)$$

$$= 50e^{-0.0035x} (1-0.0035x) = 0$$

$$\Rightarrow 1-0.0035x = 0$$

$$\Rightarrow x = 400$$

$$Signs of R' + - R(400) = 0$$

$$R(400) = 0$$

$$R(400) = 0$$

$$R(400) = 0$$

$$R(400) = 0$$

2. (8 points) The circumference of a circle is measured to be $48\,\mathrm{cm}$ with an error of $\pm 0.2\,\mathrm{cm}$. Use differentials to estimate the propagated error in the circle's area.

$$A = \pi r^{2}$$

$$C = 2\pi r \implies r = \frac{C}{2\pi}$$

$$A = \pi \left(\frac{c}{2\pi}\right)^{2} = \frac{c^{2}}{4\pi}$$

$$A = \frac{c^{2}}{4\pi}$$

$$A = \frac{c^{2}}{4\pi}$$

$$A = \frac{2c}{4\pi} dc$$

$$A = \frac{2c}{4\pi} dc$$

$$A = \frac{2c}{4\pi} dc$$

3. (8 points) The half-life of radioactive radium (226 Ra) is 1599 years. How long will it take a sample of 200 g to decay to 20 g? What percent of a given amount will remain after 1000 years?

$$P(t) = P_0 e^{kt}$$

$$\frac{1}{a} = e^{k(1599)} \Rightarrow k = \frac{\ln \frac{1}{a}}{1599}$$

a)
$$\partial 0 = \partial 00e^{kt} \Rightarrow \frac{1}{10} = e^{kt} \Rightarrow h_{10} = kt$$

$$t = \frac{h_{10}}{k} \approx 5311.76$$
years

b)
$$\frac{P_0 e^{1000 k}}{P_0} = e^{1000 k} = 0.6482...$$