Math 157 - Test 2 October 20, 2015

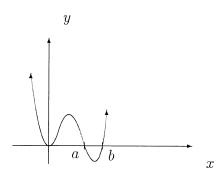
Name _	key	
	J	Score

Show all work. Supply explanations where necessary.

1. (6 points) The quantity (in mg) of a drug in the blood at time t (in minutes) is given by $Q(t) = 25(0.8)^t$. Use a single small interval to estimate the instantaneous rate of change of the quantity at t = 3. Give units on your answer.

$$[a.99, 3.01] \rightarrow Q'(3) \approx \frac{Q(3.01) - Q(2.99)}{3.01 - 2.99}$$

2. (6 points) The graph of the function f is shown here. Use the graph to determine whether each the quantities below is positive, negative, or approximately zero. Give a brief explanation for each.



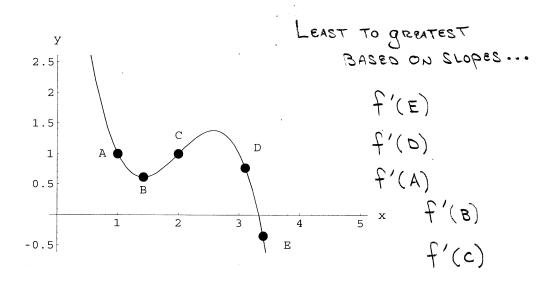
(a)
$$f(0) \approx 0$$
 The Tangert Line AT X=0 is Horizontal.

(b)
$$f'(a)$$
 IS NEGATIVE TANGET LINE AT $X = \alpha$ SLOPES DOWNWARD.

3. (4 points) Let $g(x) = 3x^2 + x$. Use a single small interval to estimate the derivative of g at x = 1.

$$[0.999, 1.001] \rightarrow g'(1) \approx \frac{g(1.001) - g(0.999)}{1.001 - 0.999} = \frac{0.014}{0.002} = 7$$

4. (6 points) The graph of the function f is shown below. Think about the value of the derivative at each of the labeled points. Arrange these values in ascending order.



- 5. (4 points) Refer to the graph of f above.
 - (a) Choose a labeled point at which f''(x) > 0. Briefly explain how you know.

(b) Choose a labeled point at which f''(x) < 0. Briefly explain how you know.

6. (4 points) Joe correctly determined that the derivative of $f(x) = e^{x^2-1}$ is given by $f'(x) = 2xe^{x^2-1}$. Use Joe's work to determine the slope of the line tangent to the graph of f at x = -1.

$$m = f'(-1) = \dot{a}(-1)e^{(-1)^{3}-1} = (-a)$$

- 7. (4 points) A baked potato has just been taken out of the oven and is cooling off before being eaten. The temperature of the potato (in ${}^{\circ}F$) after t minutes is given by the function q(t).
 - (a) Is g'(t) positive or negative? Explain.

$$g'(t)$$
 is negative Because the Temp is Decreasing. ne units on $g'(t)$?

(b) What are the units on
$$g'(t)$$
?

8. (8 points) Use the 2nd derivative to determine whether the graph of $y = x^2 + \ln x$ is concave up or concave down at the point where x = 1.

$$\frac{dy}{dx} = 3x + \frac{1}{x} = 3x + x^{-1}$$

$$\frac{d^{2}y}{dx^{2}} = 3 - x^{-2} = 3 - \frac{1}{x^{2}}$$

$$\frac{d^{2}y}{dx^{2}}\Big|_{x=1} = 3 - \frac{1}{1^{2}} = 1 > 0$$

$$\Rightarrow Graph 12 CU.$$

9. (25 points) Determine the derivative of each function. Use the correct notation when naming your derivative.

(a)
$$g(x) = \frac{4}{x^5} = 4 x^{-5}$$

 $g'(x) = -30 x^{-6}$

(b)
$$y = 6x^5 - 8x^3 + 7x - 10$$

$$\frac{dy}{dx} = 30x^4 - 34x^2 + .7$$

(c)
$$R = (t^2 + 1) \ln t$$

$$\frac{dR}{dt} = \partial t \ln t + (t^2 + 1)(\frac{1}{t})$$

(d)
$$P = \sqrt{x^2 + 4x - 3} = \left(\chi^2 + 4x - 3\right)^{1/2}$$

$$\frac{dP}{dx} = \frac{1}{2} \left(\chi^2 + 4x - 3\right) \left(2x + 4\right)$$

(e)
$$f(x) = \frac{(x^3 + 2x)^4}{e^{2x}}$$

$$f'(x) = \frac{e^{3x} (4)(x^3 + 3x)^3 (3x^2 + 3) - (x^3 + 3x)^4 (3e^{3x})}{e^{4x}}$$

10. (7 points) Find an equation of the line tangent to the graph of $h(x) = e^{-5x}$ at the point where x = 0.

POINT:
$$X = 0$$
, $y = h(0) = 1$
 $(0,1)$

Slope: $h'(x) = -5e^{-5x}$
 $M = h'(0) = -5$

Line:

 $y = -5x + b$
 $y = -5(0) + b \Rightarrow b = 1$

11. (10 points) The table below gives the values of the functions f and g and their derivatives at selected values of x.

x	-2	-1	2
f(x)	1	3	-2
f'(x)	2	-1	-1
g(x)	2	0	-2
g'(x)	-3	-2	1

(a) If h(x) = f(g(x)), use the chain rule to compute h'(2).

$$h'(x) = f'(g(x))g'(x)$$

 $h'(a) = f'(g(a))g'(a) = f'(-a)(1)$
 $= (a)(1) = [a]$

(b) If $h(x) = f(x) \cdot g(x)$, use the product rule to compute h'(-1).

$$h'(x) = f'(x)g(x) + f(x)g'(x)$$

$$h'(-1) = f'(-1)g(-1) + f(-1)g'(-1)$$

$$= (-1)(0) + (3)(-3) = [-6]$$

12. (4 points) The function g(x) is a linear function whose graph passes through the origin. Determine a formula for the function g if g'(3) = -7.

13. (8 points) With t in years since January 1, 2010, the population P of Slim Chance is predicted by

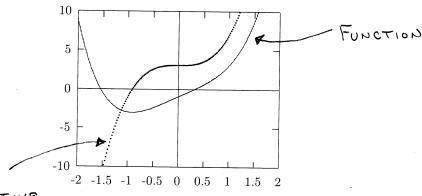
$$P = 35000(0.98)^t.$$

At what rate will the population be changing on January 1, 2023?

$$\frac{dP}{dt} = 35000 \, (\text{m 0.98}) \, (0.98)^{t} \qquad \frac{3003}{13}$$

$$\frac{dP}{dt} \Big|_{t=13} = (-543.8 \, \text{people per year})$$

14. (4 points) The following figure shows the graph of a function and its derivative. Which is which? Give at least one reason to support your conclusion. (Hint: Think about what derivatives tell us about increasing/decreasing functions.)



DERIVATIVE

- · WHERE THE FUNCTION IS

 INCREASING / DECREASING,

 THE DERIVATIVE IS POS/NEG.
- THE DERIVATIVE IS ZERO WHERE

 THE FUNC'S GRAPH HAS A

 HORIZONTAL TAN LINE.