Math 173 - Quiz 3 February 10, 2011

Name <u>key</u> Score_

Show all work to receive full credit. Supply explanations when necessary.

1. (3 points) Find the distance from the point (1, 1, -3) to the plane described by the PIS A POINT ON THE

PLANE: P(3,0,0). $\vec{N} = 2\hat{c} - 3\hat{j} + 8\hat{k} \Rightarrow$ $\vec{D}\vec{D} = -2\hat{c} \cdot \hat{c} - 2\hat{l}$

NORMAL VECTOR Q
$$\vec{N} = 2\hat{i} - 3\hat{j} + 8\hat{k} \implies$$

$$\overrightarrow{PQ} = -2\hat{c} + \hat{J} - 3\hat{k}$$

2. (2 points) Identify the quadric surface described by each equati

(a)
$$\frac{y^2}{4} = \frac{x^2}{16} + 4z^2$$
 Cone

(c)
$$\frac{y^2}{4} - x^2 - \frac{z^2}{8} = 1$$
 Hyperbolois of Two SHEETS

(d)
$$z = x^2 + 4y^2$$
 PARABOLOUS

3. (2 points) Choose any one of the quadric surfaces above and describe one of its nontrivial level curves (contours).

4. (3 points) Consider the vector-valued function $\vec{r}(t) = \sqrt{t}\,\hat{\imath} + \frac{1}{t}\,\hat{\jmath}$.

(a) What is the domain of
$$\vec{r}$$
? $\{ t : t > 0 \}$

(b) Draw a rough sketch of the graph of \vec{r} . (Hint: Eliminate the parameter.)

$$X = \sqrt{t}$$

$$Y = \frac{1}{x^2}, x > 0$$

(c) How would your graph change if we changed \vec{r} to $\vec{r}(t) = \sqrt{t} \,\hat{\imath} + \frac{1}{t} \,\hat{\jmath} + 2 \,\hat{k}$?