Math 173 - Test 1 February 21, 2013

Name key Score

Show all work to receive full credit. Supply explanations where necessary.

1. (7 points) The vector \vec{u} lies in the xy-plane, has magnitude 7, and makes an angle of 150° with the positive x-axis. The vector \vec{w} is given by $\vec{w} = -6\hat{\imath} + \hat{\jmath} + 4\hat{k}$. Determine the magnitude of $3\vec{w} - 2\vec{u}$.

$$\vec{u} = 7\cos 150^{\circ} \hat{c} + 7\sin 150^{\circ} \hat{j} = -\frac{7\sqrt{3}}{a} \hat{c} + \frac{7}{a} \hat{j}$$

$$\vec{\omega} = -6\hat{c} + \hat{j} + 4\hat{k}$$

$$3\vec{\omega} - 2\vec{\alpha} = (-18 + 7\sqrt{3})\hat{c} + (-4)\hat{j} + 12\hat{k}$$

$$||3\vec{\omega} - 2\vec{\alpha}|| = \sqrt{(-18 + 7\sqrt{3})^2 + (-4)^4 + (12)^2} \approx 13.947$$

2. (6 points) Use vectors to determine whether the points are collinear. Explain your reasoning.

$$P(3,-7,2)$$
 $Q(-8,-9,5)$ $R(-30,-13,8)$
 $\vec{PQ} = -1/\hat{c} - \partial \hat{j} + 3\hat{k}$
 $\vec{PR} = -33\hat{c} - 6\hat{j} + 6\hat{k}$
 $\vec{PQ} = -33\hat{c} - 6\hat{j} + 6\hat{k}$

3. (6 points) Find a vector of length 5 that is orthogonal to $-3\hat{\imath} + 2\hat{\jmath}$.

$$\vec{u} = -3\hat{c} + 3\hat{j}$$

$$\vec{u} = \hat{u} + 3\hat{j}$$

$$\vec{u} = \hat{u} + 3\hat{j}$$
ARE ORTHOGONAL.

$$\frac{5}{\|\vec{\omega}\|}\vec{\omega} = \frac{5}{\sqrt{13}}\left(9\hat{\imath} + 3\hat{\jmath}\right) = \sqrt{\frac{10}{\sqrt{13}}}\hat{\imath} + \frac{15}{\sqrt{13}}\hat{\jmath}$$

4. (2 points) If you were given two nonparallel vectors, how could you find a nonzero vector orthogonal to both?

DETERMINE THE CROSS PRODUCT.

5. (6 points) Find the angle between $\vec{u} = 5\hat{\imath} + 7\hat{\jmath} - \hat{k}$ and $\vec{v} = \hat{\imath} + 3\hat{k}$.

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{5-3}{\sqrt{75}\sqrt{10}} = \frac{2}{\sqrt{750}}$$

$$\theta = \cos^{-1}\left(\frac{2}{\sqrt{750}}\right) \approx 85.81^{\circ}$$

6. (8 points) The vectors \vec{u} and \vec{w} are shown below. (a) Sketch $\operatorname{proj}_{\vec{w}} \vec{u}$.

(b) Suppose $\vec{u} = 2\hat{\imath} + 3\hat{k}$ and $\vec{w} = \hat{\imath} + 5\hat{\jmath} - 2\hat{k}$. Compute $\text{proj}_{\vec{w}} \vec{u}$.

Projon
$$\vec{u} = \frac{\vec{u} \cdot \vec{\omega}}{\vec{\omega} \cdot \vec{\omega}} \vec{\omega} = \frac{\partial -6}{1 + \partial 5 + 4} \vec{\omega} = \frac{-4}{30} \vec{\omega}$$

$$= \left[-\frac{2}{15} \left(\hat{i} + 5j - \partial \hat{k} \right) \right]$$

- 7. (12 points) The points P(1,0,5), Q(2,2,-3), and R(-3,8,1) are the vertices of a triangle.
 - (a) Find the area of the triangle.

(b) Find an equation of the plane containing the triangle.

$$56(x-1) + 36(y-0) + 16(z-5) = 0$$

 $56x + 36y + 16z = 136$

(c) Find a set of parametric equations for the line segment \overline{PQ} .

$$X = 1+t$$

$$y = 2t$$

$$Z = 5-8t$$

8. (4 points) Let A, B, and C be the vertices of a triangle. Determine $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}$.

$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{O}$$

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

$$\overrightarrow{AC} + \overrightarrow{CA} = \overrightarrow{O}$$

$$\overrightarrow{AC} + \overrightarrow{CA} = \overrightarrow{O}$$

9. (10 points) An object is launched from the ground at $30 \,\mathrm{m/s}$. Find the initial angle if the object will reach its maximum height $38 \,\mathrm{m}$ downrange. Use $g = 9.8 \,\mathrm{m/s^2}$. (Hint: You may need to use the identity $2 \sin \theta \cos \theta = \sin 2\theta$.)

$$-9.8 + 30 \sin \theta = 0 \Rightarrow t = \frac{30 \sin \theta}{9.8} \Rightarrow 30 \cos \theta \left(\frac{30 \sin \theta}{9.8}\right) = 38$$

$$\Rightarrow 2\cos\theta\sin\theta = \frac{372.4}{450} \Rightarrow \sin\theta = \frac{372.4}{450} \Rightarrow \theta = 27.924^{\circ}$$

10. (4 points) Find a vector-valued function whose graph is the line with symmetric equations:

$$\frac{x-1}{3} = \frac{y+2}{5} = \frac{z-3}{7} \implies X = 1+3t$$

$$Y = -3+5t$$

$$Z = 3+7t$$

$$\vec{\Gamma}(t) = (1+3t)\hat{i} + (-3+5t)\hat{j}$$

+ $(3+7t)\hat{k}$

- 11. (6 points) Consider the plane 5x + 2y z = 7.
 - (a) Find a vector normal to the plane.

$$\vec{n} = 5\hat{c} + a\hat{j} - \hat{k}$$

(b) Find two points in the plane.

(c) Connect your points to form a vector. Then show your vector is orthogonal to the normal vector.

$$\vec{p}_{Q} = -\hat{i} - \hat{j} - 7\hat{k}$$

$$\vec{p}_{Q} \cdot \vec{N} = 5(-1) + 2(-1) + (-1)(-7)$$

$$= 0$$

12. (3 points) Suppose $\vec{r}(t)$ describes a line in space. What can be said about $\hat{T}'(t)$?

|F
$$\uparrow$$
(t) DESCRIBES A LINE, \uparrow '(t) AND \uparrow (t) ARE CONSTANT.

THEREFORE, \uparrow '(t) = \eth .

13. (6 points) Let
$$\vec{r}(t) = t\hat{i} + t^2\hat{j} + \ln t\hat{k}$$
. Compute $\hat{T}(1)$.

$$\vec{\Gamma}'(t) = \hat{i} + \partial t \hat{j} + \frac{1}{t}\hat{k}$$

$$\vec{\Gamma}'(1) = \hat{i} + \partial \hat{j} + \hat{k}$$

$$\vec{\Gamma}'(1) = \hat{i} + \partial \hat{j} + \hat{k}$$

14. (10 points) A projectile is falling in such a way that its motion is described by

$$\vec{r}(t) = (25\sqrt{3}t)\hat{i} + (-16t^2 + 25t + 25)\hat{j}.$$

(a) When does the projectile reach is maximum height?

$$-32t + 35 = 0$$

$$\Rightarrow t = \frac{35}{32} = 0.78125$$

(b) Set up, but do not evaluate, the definite integral that gives the length of the path of the projectile from t=0 until it reaches its max height.

$$\int_{0}^{25/3a} || \hat{r}'(t) || dt = \int_{0}^{25/3a} || [a5\sqrt{3}]^{2} + [-3at+25]^{2} dt$$

≈ 35.624

15. (2 points) Describe the motion of a particle if its normal component of acceleration is 0.

16. (2 points) Describe the motion of a particle if its tangential component of acceleration is 0.

- 17. (6 points) Suppose a particle moves along the curve from left to right. Sketch and label each of the following:
 - (a) the unit tangent vector at the point of greatest curvature
 - (b) a point where the principal unit normal vector does not exist
 - (c) the principal unit normal vector at the point P

