A remarkably elementary proof of the irrationality of e
Steve Kifowit, Prairie State College, January 2009*

The standard proofs of the irrationality of e make use of the infinite series representation

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$ \hspace{1cm} (1)

or the corresponding alternating series representation for $1/e$. (One such proof is given at the end of this article.) While these proofs are elementary, they obviously require some familiarity with infinite series. The following proof requires only integration-by-parts and some basic properties of the Riemann integral. The sum (1) follows as a consequence, thereby making this proof useful as an introduction to infinite series.

e is irrational.

Proof: Suppose $e = a/b$, where a and b are positive integers. Choose an integer $n \geq \max\{b, e\}$. Now consider the definite integral $\int_0^1 e^{-x} \, dx$. This integral is easily evaluated to give $1 - \frac{1}{e}$. On the other hand, repeated integration-by-parts (n times) gives

$$1 - \frac{1}{e} = \frac{1}{e} \left(1 + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!} \right) + \int_0^1 \frac{x^n}{n!} e^{-x} \, dx.$$

Upon multiplying both sides by e and isolating the integral, we obtain

$$e - 1 - \left(1 + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!} \right) = e \int_0^1 \frac{x^n}{n!} e^{-x} \, dx.$$ \hspace{1cm} (2)

Multiplying both sides of (2) by $n!$ gives

$$n!(e - 1) - n! \left(1 + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!} \right) = e \int_0^1 x^n e^{-x} \, dx.$$

Because of the choice of n and the assumption that e is rational, the left hand side must reduce to an integer. However the value of the expression on the right is between zero and one. Indeed

$$0 < e \int_0^1 x^n e^{-x} \, dx \leq e \int_0^1 x^n \, dx = \frac{e}{n+1} < 1.$$

This contradiction implies that e must be irrational. \diamond

Notice that the integral in (2) approaches zero as $n \to \infty$. Therefore we obtain (1) as a by-product of the proof. The series representation (1) was derived in a similar way by Chamberland in [1] and by Johnson in [2].

A proof using the series for $1/e$...

Use the fact that

$$e^{-1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!},$$

*This article was originally written in January 2002. It was updated in 2009 to include the second proof.
and let \(S_n \) denote the \(n \)th partial sum of the series:

\[
1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots + \frac{(-1)^n}{n!}.
\]

Notice that \(S_n \) is a rational number, and it can be written in the form \(M/n! \), where \(M \) is an integer. By the alternating series estimation theorem, it follows that

\[
S_n - \frac{1}{(n+1)!} < e^{-1} < S_n \quad \text{for even } n
\]

and

\[
S_n < e^{-1} < S_n + \frac{1}{(n+1)!} \quad \text{for odd } n.
\]

In either case, \(e^{-1} \) is strictly between two rational numbers of the forms \(\frac{a}{(n+1)!} \) and \(\frac{a+1}{(n+1)!} \), where \(a \) is an integer. It follows that \(e^{-1} \) cannot be written as a fraction with denominator \((n+1)! \) for any \(n \geq 0 \). Since any rational number can be written as a fraction with denominator \((n+1)! \), we conclude that \(e^{-1} \) cannot be a rational number. Since \(1/e \) is irrational, it follows that \(e \) is irrational. (This proof is similar to Sondow’s geometric proof [3].)

References

