# Sets

A set is a collection of distinct objects. The objects are called **elements** of the set.

Two sets are equal if they have exactly the same elements.

The symbol  $\in$  means "is an element of".

A is a **subset** of B, written  $A \subseteq B$ , if each element of A is also an element of B.

A is a **proper subset** of B, written  $A \subset B$ , if  $A \subseteq B$  and  $A \neq B$ .

The **empty set**,  $\emptyset$ , is the set containing no elements.

**Set Builder Notation:**  $\{x : P\}$  = Set of all elements x such that property P is satisfied.

Suppose A and B are subsets of U.

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

$$A' = \bar{A} = \{x : x \in U \text{ and } x \notin A\}$$

$$A - B = \{x : x \in A \text{ and } x \notin B\}$$

$$A \times B = \{(x, y) : x \in A \text{ and } y \in B\}$$

n(A) =Number of elements in A

$$n(A \times B) = n(A) \cdot n(B)$$

## Functions

A function from a nonempty set A into a nonempty set B is a rule or correspondence that assigns to each element of A a single element of B.

The domain of a function is the set of inputs.

The **range** of a function is the set of outputs.

The **graph** of a function f is the set of all ordered pairs (x, f(x)), where x is in the domain of f.

A linear function is a function whose graph is a nonvertical line. Any linear function can be defined by an equation of the form y = mx + b, where m and b are numbers.

## Lines

Slope: 
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Point-Slope Form:  $y - y_1 = m(x - x_1)$ 

Slope-Intercept Form: y = mx + b

Standard Form: Ax + By = C

Vertical Lines: x = a

Horizontal Lines: y = b

# Patterns and Sequences

# Pascal's Triangle:

### Fibonacci Sequence:

$$1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \dots$$

### Square Numbers:



nth square number =  $n^2$ 

## Triangular Numbers:



nth triangular number =  $\frac{n(n+1)}{2}$ 

#### Arithmetic Sequence:

nth term = first term + difference  $\times (n-1)$ 

#### Geometric Sequence:

nth term = first term  $\times$  (ratio) $^{(n-1)}$