Bernoulli equations

A first-order equation of the form

$$\frac{dy}{dx} + P(x)y = Q(x)y^n,$$

where P and Q are continous on an interval and n is a real number, is called a Bernoulli equation.

Divide both sides of the equation by y^n and then make the substitution $u=y^{1-n}$. This will transform the Bernoulli equation into the linear equation

$$\left(\frac{1}{1-n}\right)\frac{du}{dx} + P(x)u = Q(x).$$

Also note that y(x) = 0 may also solve the original Bernoulli equation.

Homogeneous equations

If the right-hand side of the equation

$$\frac{dy}{dx} = f(x, y)$$

can be expressed as a function of the ratio y/x alone, then we say the equation is *homogeneous*.

In this context, homogeneous means that the terms of the equation are dimensionally balanced.

In a homogeneous equation, the substitution

$$u = \frac{y}{x}, \qquad \frac{dy}{dx} = u + x\frac{du}{dx}$$

will reduce it to a separable equation.

Reducible to 1st-order

For certain 2nd-order differential equations, the substitution u=y' will reduce the equation to a solvable 1st-order equation.

For equations of the form

$$F(x, y', y'') = 0,$$

use the substitutions

$$y' = u \qquad y'' = u'$$

For equations of the form

$$F(y, y', y'') = 0,$$

use the substitutions

$$y' = u \qquad y'' = u \frac{du}{dy}$$

Exact equations

The differential form M(x,y)dx + N(x,y)dy is said to be *exact* on a rectangle R if it is the total differential of a function F(x,y) on R. That is, M(x,y)dx + N(x,y)dy is exact if

$$M(x,y) = \frac{\partial F}{\partial x}$$
 $N(x,y) = \frac{\partial F}{\partial y}$

for some function F(x,y) on R.

If M(x,y)dx + N(x,y)dy is an exact differential form, then the differential equation

$$M(x,y)dx + N(x,y)dy = 0$$

is called an exact equation.

Test for exactness

Suppose the first partial derivatives of M(x,y) and N(x,y) are continuous in a rectangle R. Then

$$M(x,y)dx + N(x,y)dy = 0$$

is an exact differential equation if and only if

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

for all (x, y) in R.