Laplace Transform

Let f(t) be a function defined on $[0,\infty)$. The *Laplace transform* of f is the function F such that

$$F(s) = \int_0^\infty e^{-st} f(t) \, dt,$$

for all s for which the improper integral converges.

Other notation for the Laplace transform is $F = \mathscr{L}{f}$.

<u>Theorem</u>: Let f_1 and f_2 be functions whose Laplace transforms exist for s > a, and let c_1 and c_2 be constants. Then

 $\mathscr{L}\{c_{1}f_{1}+c_{2}f_{2}\}=c_{1}\mathscr{L}\{f_{1}\}+c_{2}\mathscr{L}\{f_{2}\},$ for s>a.

<u>Definition</u>: A function f is said to be of *exponential order* α if there exist positive constants T and M such that

 $|f(t)| \le M e^{\alpha t},$

for all $t \geq T$.

<u>Theorem</u>: If f(t) is piecewise continuous on $[0,\infty)$ and of exponential order α , then $F = \mathscr{L}{f}$ exists for $s > \alpha$.

Furthermore, $F(s) \rightarrow 0$ and $s \rightarrow \infty$.

<u>Theorem</u>: Suppose f and g are piecewise continuous for $t \ge 0$ and are of exponential order. Let F and G be their corresponding Laplace transforms. If F(s) = G(s) for all s > c, then f(t) = g(t) wherever on $[0, \infty)$ that both are continuous.

Inverse Laplace Transform

Given a function F(s), if there is a function f(t) that is continuous on $[0,\infty)$ and satisfies $\mathscr{L}{f} = F$, then we say that f is the inverse Laplace transform of F.

Other notation for the inverse Laplace transform is $f = \mathscr{L}^{-1}{F}$.