
Example

The base of a solid is the region in the xy-plane that is bounded by the graphs of $y=1-x^2$ and y=0. Cross sections perpendicular to the x-axis are squares. Find the volume of the solid.

Solution

Strips pile up From X=-1 to X=1.

Area of cross Section At X =
$$(Height of Strip)^2$$

$$= (1-x^2)^2$$

Volume = $\int_{-1}^{1} (1-x^2)^2 dx = \int_{-1}^{1} (1-2x^2+x^4) dx$

$$= 2 \int_{0}^{1} (1-2x^2+x^4) dx$$

$$= 2 \int_{0}^{1} (1-2x^2+x^4) dx$$

$$= 2 \int_{0}^{1} (1-3x^2+x^4) dx$$

$$= 2 \int_{0}^{1} (1-3x^2+x^4) dx$$

$$= 2 \int_{0}^{1} (1-3x^2+x^4) dx$$