Math 129 - Test 2 October 21, 2020

Name key Score

Show all work to receive full credit. Supply explanations where necessary. Label your axes when graphing.

1. (5 points [11]) Solve for y:
$$\sqrt[3]{5y-1} - 4 = 0$$

$$\left(\sqrt[3]{5y-1}\right)^3 = \left(4\right)^{3}$$

$$5y-1=64 \Rightarrow 5y=65 \Rightarrow (y=13)$$

2. (6 points [7,11]) Solve for
$$x$$
: $x = \sqrt{15 - 2x}$

$$X^{2} = 15 - 0$$

$$X = -5 \quad \text{CANNOT BE A SOLUTION}$$

$$X^{2} + 0x - 15 = 0$$

$$(x+5)(x-3) = 0$$

$$X = 3 \quad \text{CHECKS OUT.}$$

$$X = -5, \quad X = 3$$

3. (3 points [7,11]) The equation $w^4 - 36w^2 + 35 = 0$ is "quadratic in form." What substitution will reduce the equation to quadratic? Make the substitution and rewrite the equation, but do not solve.

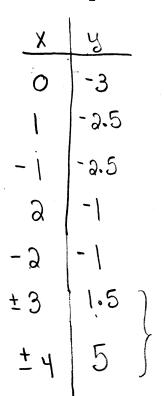
$$\omega^{4} - 36\omega^{2} + 35 = 0$$

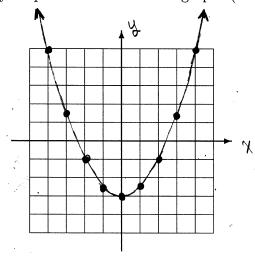
$$u = \omega^{2} \implies u^{2} - 36u + 35 = 0$$

4. (3 points [11]) Calculate the distance between the points E = (2, -1) and B = (7, -9). Round your final answer to the nearest hundredth.

$$D = \sqrt{(7-3)^{3} + (-9-(-1))^{3}}$$

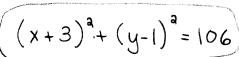
$$= \sqrt{(5)^{3} + (-8)^{3}} = \sqrt{35+64} = \sqrt{89}$$


$$\approx (9.43)$$


5. (3 points [11]) A line segment extends from the point (1, -4) to the point (5, 2). Find the coordinates of the midpoint of the segment.

$$\mathcal{M}_{10}p_{01NT} = \left(\frac{1+5}{a}, \frac{-4+2}{a}\right)$$

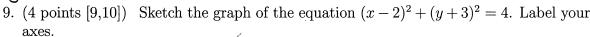
$$= \left(\frac{6}{a}, \frac{-2}{a}\right) = \left(3, -1\right)$$

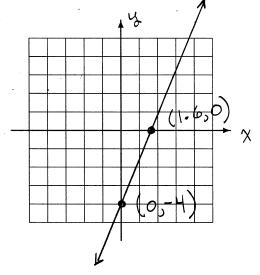

6. (6 points [1,9,10]) Make a table that shows five points on the graph of the equation $y = \frac{1}{2}x^2 - 3$. Then plot your points and sketch the graph. (Label your axes.)

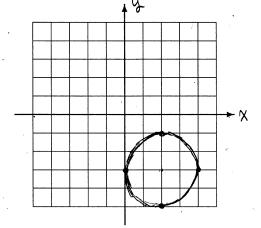
Some ADDITIONAL
POINTS FOR A BETTER GRAPH.

7. (4 points [9,10]) Find the standard form equation of the circle that has center (-3,1)and passes through (6, -4).

$$= \sqrt{(-3-6)^{2} + (1-(-4))^{2}} = \sqrt{81+25} = \sqrt{106} \implies r^{2} = 106$$


8. (6 points [3]) Find the x- and y-intercepts of the line described by 5x - 2y = 8. Then sketch the graph of the line. Label the axes and the intercepts.


$$5x = 8$$


$$X = \frac{8}{5} = 1.6$$

Y-INTERCEPT:

$$X = O$$

CIECLE CENTERED AT (a,-3) WITH RIDIUS 2. 10. (6 points [2,4]) Find an equation of the line that passes through the points (3,4) and (8,-3). Write your final answer in slope-intercept form.

$$M = \frac{\Delta y}{\Delta x} = \frac{4 - (-3)}{3 - 8} = \frac{7}{5}$$

$$y = -\frac{7}{5}x + \frac{41}{5}$$

$$y-4=-\frac{7}{5}(x-3)$$
 $\Rightarrow y=-\frac{7}{5}x+\frac{21}{5}+4$

11. (3 points [2,4]) A line is described by the equation $y+2=-\frac{3}{5}(x-1)$. Find the slope of the line and a point on the line.

THE EQUATION IS IN POINT-SLOPE FORM.

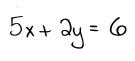
WE CAN READ THE SLOPE AND A POINT.

$$M = -\frac{3}{5}, \quad Point = (1,-2)$$

- 12. (10 points [2,4]) Consider the line described by the equation 7x + 5y = 5.
 - (a) Find an equation of the line that is parallel to the given line and passes through (5,-5). Write your answer in standard form.

$$7x + 5y = 5$$
 $5y = -7x + 5$
 $y = -\frac{7}{5}x + 1$
 $y + 5 = -\frac{7}{5}x + 7$
 $y + 5 = -\frac{7}{5}x + 7$
 $y + 5 = -\frac{7}{5}x + 7$

(b) Find an equation of the line that is perpendicular to the given line and passes through (5,-5). Write your answer in standard form.


$$M_{\perp} = \frac{5}{7} \quad P_{0,1NT} \quad (5,-5)$$

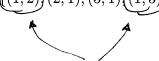
$$y+5 = \frac{5}{7}(x-5)$$

13. (4 points [2,3,4]) Determine equations of the horizontal and vertical lines that pass through (13,-17). Label which is which.

14. (6 points [2,4]) A line is described by the equation 5x + 2y = 6. Write the equation in slope-intercept form. Then graph the line, and state the coordinates of two points on your line. (Label your axes.)

y

$$2y = -5x + 6$$


$$y = -\frac{5}{2} \times +3$$

$$\frac{-5}{2} = \frac{RISE}{RUN}$$

15. (3 points [10]) Three relations are shown below. Circle all that are NOT functions. Then write a sentence explaining why you made your choice(s).

(a) $\{(100, 100)\}$

(b) $\{(x,y): y \text{ is a real number and } x=5\}$ \longrightarrow X=5 is repeated with ((1,2))(2,1),(3,1)((1,3))

BEC ARE NOT FUNCTIONS

BECAUSE SOME

3-COORDINATES HAVE

MORE THAN ONE Y-COORD.

- 16. (6 points [1]) Let $f(x) = \sqrt{6-3x}$.
 - (a) What is the domain of f?

$$6-3x \ge 0 \Rightarrow 6 \ge 3x \Rightarrow 3 \ge x$$

$$(-\infty, 3]$$

(b) Evaluate f(-10).

$$f(-10) = \sqrt{6-3(-10)} = \sqrt{36} = 6$$

(c) Evaluate $f(\frac{2}{3})$.

$$f(\frac{3}{3}) = \sqrt{6-3(\frac{3}{3})} = \sqrt{6-3} = \sqrt{4}' = 2$$

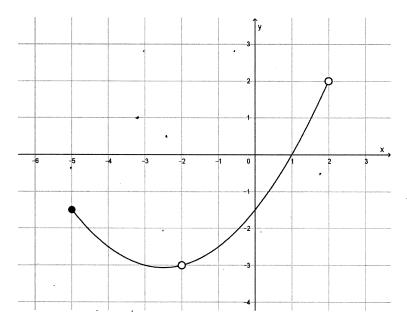
17. (3 points [1]) Determine the domain of $h(x) = \frac{x-3}{x^2-12x+27}$

DOMAIN: ALL REAL

#,5 EXCEPT 3 OR 9.

(-0,3)(3,9)(9,0)

18. (5 points [5]) Let $f(x) = x^2 - 3x$. Expand and simplify the expression f(x+5) - f(x).


$$f(x+5) - f(x) = [(x+5)^{3} - 3(x+5)] - [x^{2} - 3x]$$

$$= [x^{2} + 10x + 25 - 3x - 15] - [x^{2} - 3x]$$

$$= x^{3} + 10x + 25 - 3x - 15 - x^{2} + 3x$$

$$= 10x + 10$$

19. (14 points [1,10]) The graph of y = f(x) is shown below. Use the graph for each part of this problem.

(a) Is this the graph of a function? How do you know?

YES, THE GRAPH PASSES THE VERTICAL LINE TEST.

(b) What is the domain of f?

(c) What is the range of f?

(d) Determine f(-5).

(e) Determine f(-2).

(f) Determine f(0).

(g) How many solutions are there for the equation f(x) = -2?