Math 129 - Test 1A

February 19, 2020

Name	key	
	J	Score

Show all work to receive full credit. Supply explanations where necessary.

1. (4 points [3]) Which of these equations ARE linear equations? Circle all that apply.

$$\frac{6}{x+5} + 3 = \frac{1}{x}, \quad (5(2-x) = x), \quad x(x-6) = 0, \quad (\frac{2x}{3} + \frac{1}{6} = x)$$
Rational

2. (3 points [3]) Solve for x: 4(x-5) + 2x = 3(x-1) + 10

$$4x-30+3x = 3x-3+10$$

 $6x-30 = 3x + 7$
 $3x = 37$

3. (3 points [3]) Solve for w: $\frac{12 - 6w}{5} = 6$

$$12-6\omega = 30$$

$$-6\omega = 18$$

$$\omega = -3$$

4. (4 points [3]) Yesterday, David rode his bike at the speed of 10 miles per hour. Today, he rode at 14 miles per hour. In the two days, he biked for a combined total time of 9 hours. Let x be the number of hours he biked yesterday. Write an algebraic expression in terms of the single variable x that gives the total number of miles he biked in the two days. (Remember that distance equals rate times time.)

 $X = Hours Biked yesterday <math>\Rightarrow IOX = MILES BIKED YESTERDAY$ $9-X = Hours Biked Today <math>\Rightarrow I4(9-X) = MILES BIKED TODAY$

TOTAL OF 9 HOURS

5. (3 points [3]) Solve for
$$r$$
: $3r - (5 - 2r) = 3(r - 2) + 2r + 2r$

$$3r - 5 + 3r = 3r - 6 + 3r + 3$$

6. (5 points [3]) Solve for x. Write your solution set in interval notation, and graph it on a number line.

$$4 - 7x \ge 32$$

$$-7x \ge 28$$

7. (5 points [3]) Solve for y. Write your solution set in interval notation, and graph it on a number line.

$$8y + 14 < 2(3 + 2y) + 7y$$

 $8y + 14 < 6 + 4y + 7y$
 $8y + 14 < 11y + 6$
 $8 < 3y$
 $\frac{8}{3} < y$
 $\frac{8}{3} < y$
 $\frac{8}{3}$

8. (3 points [3]) Solve for x: $3x + 13 > \frac{3}{2}(4 + 2x)$

$$3x + 13 > \frac{12}{a} + \frac{6x}{a}$$

$$3x + 13 > 6 + 3x$$

ALL NUMBERS ARE
SOLUTIONS.

9. (6 points [3]) Solve for y. Write your solution set in interval notation, and graph it on a number line.

10. (4 points [3]) Kate sells her craft hot sauce at the local farmer's market. It costs her \$150 to rent a booth, and she sells the sauce for \$8 per bottle. Let b represent the number of bottles that Kate will sell. Suppose she would like to take home at least \$400. Write an inequality involving b that Kate could solve to determine the numbers of bottles she must sell.

$$\left(\begin{array}{c} Amount For \\ Sauce \end{array}\right) - \left(\begin{array}{c} Rent \\ \end{array}\right) = At least $$^{$\sharp 500}$$$

11. (4 points [11]) Solve for x: -2|3x-1|+5=-7 -3 |3x-1| = -13 |3x-1| = 6

$$3x-1=6$$
 or $3x-1=-6$
 $3x=7$ $3x=-5$
 $x=\frac{7}{3}$ or $x=-\frac{5}{3}$

12. (2 points [11]) Solve for t: |t+6| = -4

ABS. VALUE CANNOT BE NEGATIVE

No SOLUTION

13. (6 points [11]) Solve for x. Write your solution set in interval notation, and graph it on a number line.

14. (4 points [7,12]) Write as a complex number in standard form: $\frac{7+4i}{2-i}$

$$\frac{7+4i}{2-i} \cdot \frac{2+i}{2+i} = \frac{(7+4i)(2+i)}{(2-i)(2+i)} = \frac{14+15i+4i^2}{4+1}$$

$$= \frac{10+15i}{5} = (2+3i)$$

15. (3 points [7,12]) Write as a complex number in standard form: i^{29}

16. (3 points [7]) Solve for x: 4(x+2)(7x+2) = 0

$$X+2=0 \text{ or } X+2=0$$

$$X=-\frac{2}{7}$$

17. (4 points [7]) Solve for x: $x^2 = 3x + 18$

$$x^{2}-3x-18=0$$
 $(x-6)(x+3)=0$
 $x=6 \propto x=-3$

18. (3 points [6]) Complete the square:
$$x^2 + 6x + 2$$

$$\frac{6}{2} = 3$$
 $(x+3)^2 - 9 + 2$ $= (x+3)^2 - 7$

19. (5 points [7]) Solve for
$$x$$
. Write your solution(s) in exact form, simplified as much as possible.

$$3x^{2} - 2x + 1 = 0$$

$$Q = 3, b = -3, C = 1$$

$$X = \frac{\partial \pm \sqrt{4 - 4(3)(1)}}{\partial(3)} = \frac{\partial \pm \sqrt{-8}}{6} = \frac{\partial \pm \partial \sqrt{\partial} i}{6}$$

$$= \frac{1 \pm \sqrt{\partial} i}{3}$$

20. (6 points [7]) A ball is thrown from a height of 60 meters with an initial downward velocity of 3 meters per second. The height of the ball (in meters) after t seconds is given by $h = 60 - 3t - 4.9t^2$. When does the ball hit the ground? Round your answer to the nearest hundredth.

$$h = 0 \implies 60 - 3t - 4.9t^{2} = 0$$

$$a = -4.9, b = -3, c = 60$$

$$t = 3 \pm \sqrt{9 - 4(-4.9)(60)}$$

$$t = 3 \pm \sqrt{1185}$$

$$3 \pm \sqrt{1185}$$

21. (3 points [7]) Use the discriminant to determine a value for a so that the equation has exactly one real solution.

$$ax^{2} + 7x + 4 = 0$$
 $a = a$, $b = 7$, $C = 4$
 $b^{2} - 4ac = 49 - 4a(4) = 49 - 16a = 0$
 $a = 49 - 4a(4) = 49 - 49 = 49 - 49 = 49 = 60$

22. (3 points [1,11]) Determine the values of x that are restricted from the following expression: $\frac{x-6}{x^2+2x-15}$

$$(x+5)(x-3) = .0$$

- X = -5, X = 3
- 23. (4 points [3,7,11]) Solve for u: $\frac{5}{u} = \frac{8}{u-7}$

$$u = 1$$

Cross multiply...
 $5(u.7) = 8u$
 $5u - 35 = 8u$

-35 = 3u $u = \frac{-35}{3}$

24. (6 points [3,7,11]) Solve for x:

$$\frac{6}{(x-1)(x-3)} = 1 + \frac{3}{x-3}$$

Mult by (X-1)(X-3) to

CLEAR FRACTIONS ...

$$6 = (x-1)(x-3) + 3(x-1)$$

$$6 = \chi^2 - 4x + 3 + 3x - 3$$

$$Q = X_3 - X - Q = (X-3)(X+3)$$

X-3=0 on X+2=0

X=3 15 A RESTRICTED VALUE!

25. (4 points [11]) Solve for x. Round your answer(s) to the nearest hundredth.

$$(3x - 2)^5 - 36 = 0$$

$$(3x-2)^5 = 36$$

$$3x-2 = \sqrt[5]{36}$$

$$X = \frac{2 + \sqrt[5]{36}}{3} \times 1.35$$