<u>Math 130 - Test 1</u> September 16, 2020

Name Key Score

Show all work to receive full credit. Supply explanations where necessary. With the exception of rationalizing denominators, simplify all answers.

- 1. (6 points) Consider the angle θ whose degree measure is -150° .
 - (a) Sketch the angle θ in standard position. Label the initial and terminal sides.

(b) Determine a different angle that is coterminal to θ .

(c) Convert -150° to radian measure.

$$-150^{\circ} \times \frac{\pi}{180^{\circ}} = \frac{5\pi}{6}$$

2. (5 points) Find the length of the arc of a circle of radius 10 centimeters subtended by the central angle of 50°. Round your answer to the nearest hundredth.

$$\theta = 50^{\circ} \times \frac{\pi}{180^{\circ}} = \frac{5\pi}{18}$$
Arc Length = $(10)(\frac{5\pi}{18})$

$$\approx (8.73 \text{ cm})$$

- 3. (6 points) A wheel of radius 8 inches is rotating at 3 radians per second.
 - (a) Find the linear speed in inches per second.

(b) Find the angular speed in degrees per second.

$$\omega = 3 \text{ rio/s}$$
 $\left(\frac{180^{\circ}}{\pi \text{ rao}}\right) = \left(\frac{540^{\circ}}{\pi \text{ rao}}\right) = \left(\frac{540^{\circ$

(c) Find the angular speed in revolutions per minute (RPM).

$$\omega = \left(\frac{3 \text{ RAD}}{8}\right) \left(\frac{1 \text{ REV}}{9 \text{ min}}\right) = \frac{608}{1 \text{ min}} = \frac{180}{9 \text{ min}} \approx 88.65 \text{ RPM}$$
ats) The two less of a right triangle have lengths 3 and 5

- 4. (8 points) The two legs of a right triangle have lengths 3 and 5.
 - (a) Determine the length of the hypotenuse.

$$c^2 = 9 + 35$$

$$= 34$$
 $c = \sqrt{34}$

(b) Let β be the angle opposite the leg of length 5. Determine the exact values of the six trigonometric functions at β . You do not have to rationalize your denominators, but otherwise write your fractions as simple as possible.

$$S_{IN} \beta = \frac{5}{\sqrt{34}}$$
 $CSC \beta = \frac{134}{5}$
 $COT \beta = \frac{3}{5}$

5. (5 points) To find the height of a tree, a person walks to a point 30 feet from the base of the tree. She measures an angle of 57° between a line of sight to the top of the tree and the ground (see figure). Find the height of the tree. Round to the nearest tenth of a foot.

6. (8 points) Complete the triangle by finding the angle A and the side lengths a and c. Round the lengths to 4 decimal places.

$$m(LA) + 60^{\circ} = 90^{\circ}$$

$$m(LA) = 38^{\circ}$$

$$A$$

$$62^{\circ}$$

TAN
$$\partial 8^{\circ} = \frac{\alpha}{10}$$

$$\Rightarrow \alpha = 10 \text{ TAN } \partial 8^{\circ} \approx 5.3171$$

$$81N 60^{\circ} = \frac{10}{C}$$

$$C = \frac{10}{\sin 60^{\circ}} \approx 11.3057$$

7. (6 points) For each part below, use the information to determine the quadrant in which θ lies.

(a)
$$\sin \theta < 0$$
, $\cos \theta > 0$
 $3 \text{ or } 4$ | $\cos 4$
(b) $\csc \theta < 0$, $\cot \theta > 0$
 $3 \text{ or } 4$ | $\cos 3$

(c),
$$\tan \theta < 0$$
, $\sec \theta < 0$

$$2 \cos \theta < 0$$

$$2 \cos \theta < 0$$

8. (6 points) Find the exact values of the six trigonometric functions at θ . Write your answers as fractions in lowest terms.

$$SIN\theta = \frac{15}{17}$$

$$\cos \theta = -\frac{8}{17}$$

$$T_{AN} \theta = -\frac{15}{8}$$

$$csc \theta = \frac{17}{15}$$

$$\cot \theta = -\frac{8}{15}$$

9. (6 points) For each angle, compute the reference angle.

(a)
$$-150^{\circ}$$

(b)
$$7\pi/4$$

$$\partial \pi - \frac{7\pi}{4} = \left(\frac{\pi}{4}\right)$$

(c)
$$3\pi/4$$

$$\pi - \frac{3\pi}{4} = \left(\frac{\pi}{4}\right)$$

10. (5 points) Describe how you would use the reference angle and the table shown below to determine $\sin 300^{\circ}$.

300° 15 IN THE YTH QUAD.

THE REFERENCE ANGLE 15 60: SIN 60° = $\frac{\sqrt{3}}{a}$

IN 4TH QUAD, THE SINE IS NEQ.

$$\Rightarrow \left(s_{1} \text{N} , (300^{\circ}) = - s_{1} \text{N} , (60^{\circ}) = - \frac{\sqrt{3}}{2} \right)$$

11. (4 points) Pretend that $\sin 53^{\circ} = 0.8512$ (it's not, but pretend!). Based on that (fake) value of $\sin 53^{\circ}$, what would be the (fake) value of $\cos 37^{\circ}$? Briefly explain your reasoning.

- 12. (5 points) Use basic trigonometric identities to simplify each expression.
 - (a) $\csc t \tan t \cos t$

(b)
$$1 - \cos^2 \theta = \left(\frac{s_1 N^2 \theta}{s_1 N^2 \theta} \right)$$

$$8 \in CAUSE \quad S_1 N^2 \theta + \cos^2 \theta = 1$$

13. (6 points) Compute x. Round to two decimal places.

$$7AN 36^{\circ} = \frac{85}{a}$$
 $TAN 50^{\circ} = \frac{85}{b}$
 $X = a + b$

$$A = \frac{85}{7AN 36^{\circ}}$$

× \88.32

14. (8 points) On the attached graph paper, sketch the graph of $y = \sin x$. Include two full periods. Label your axes.

Use graph paper.

SEE ATTACHED GRAPH.

15. (8 points) Suppose you were given the graph of $y = \cos x$. Describe exactly how the graph of each of the following would be different.

(a)
$$y = 2 + \cos x$$

THE GRAPH OF Y= COS X IS SHIFTED UP 2 UNITS

(b) $y = 2\cos x$

THE AMPLITUDE IS 2 INSTEAD OF 1. THE GRAPH OF Y = COSX

15 STRETCHED VERTICALLY BY A FACTOR OF 2.

(c) $y = \cos(2x)$

THE PERIOD IS $\frac{\partial \pi}{\partial z} = \pi$ RATHER THAN $\partial \pi$. THE GRAPH OF $y = \cos x$ IS COMPRESSED HORIZONTALLY.

(d) $y = -2\cos x$

GRAPH IS THE SAME AS IN (b) EXCEPT FLIPPED ABOUT THE X-AXIS.

16. (3 points) What is the period of the graph of the equation $y = 1 + 2\sin(3x + 4)$?

 $\frac{3\pi}{3}$

17. (3 points) What would be the y-coordinate of the highest points on the graph of $y = 1 + 2 \sin x$? Briefly explain how you know.

For
$$y = \sin x$$
, The Highest pts are at $y = 1$.
For $y = \partial \sin x$, " " would be. At $y = \partial$.
For $y = 1 + \partial \sin x$, " " $y = 3$.

<u>X</u>	ZINX
\circ	0
$\frac{\pi}{\delta}$	
π	0
37	-
π^{6}	
577	
37	
7 1/2	- \
4	0

PrintFreeGraphPaper.com