Math	131	_	Final	Exam
------	-----	---	-------	------

December 15, 2021

Name _____

Show all work to receive full credit. For each problem, place your final answer in the box provided. Each problem is worth 5 points—up to 2 points for the answer and up to 3 points for the supporting work or explanation.

1. Determine the limit or briefly explain why it does not exist.

$$\lim_{x \to 2} \sqrt{4 - x^2}$$

2. Determine the limit. Show analytically (not with a graph or table) how you got your answer.

$$\lim_{x \to 0} \frac{1 + \cos x^3}{x(x+8)}$$

3.	Determine the limit.	Use algebraic	techniques	(not a graph	n, table,	or L'Hôpital'	s rule
	to show how you got	your answer.					

$$\lim_{x \to 2} \left[\frac{(x+2)^2 - 3x - 10}{x^2 - 2x} \right]$$

4. Yes or No: Is f continuous at x=-2? Use the definition of continuity to support your answer.

$$f(x) = \begin{cases} 2x + \cos \pi x, & x < -2\\ x - 1, & x \ge -2 \end{cases}$$

5. Find $\frac{d^2y}{dx^2}$ if $y = 5x^3 \sin x$.

6.	Let $f(x) =$	x^3 .	Write	f'(x)	in t	the	box,	then	use	the	limit	definition	of	derivative	to
	obtain vour	ansv	ver												

7. Find f'(0) if $f(x) = (e^x + 2\cos x)^4$.

8.	Find	an	equation	of	the	line	tangent	to	the	graph	of a	$x^2 +$	- 2 <i>xy</i>	$+ y^4$	=	5x -	- 1	at	the
	point	(2.	. 1).																

9. Let
$$g(x) = \sin^{-1}(2x) + \tan^{-1}(x^2) + \cos^{-1}(2x)$$
. Determine $g'(x)$.

10. Some values of f(x) and f'(x) near x = 1 are given in the table below.

x	0.50	0.75	1.00	1.25	1.50
f(x)					
f'(x)	2.74	3.82	5.00	6.26	7.60

Determine the linearization of f at x = 1, and use it to approximate f(0.9).

11. Find the slope of the line tangent to the graph of $y = \log_5(3x+2)^4$ at the point where x = 1. Write your answer in decimal form, rounded to the nearest thousandth.

12. Find the critical number(s) of $f(x) = \frac{x^2 + 4}{x}$.

14. Use calculus techniques to find the absolute extreme values of $f(x) = 3x^4 - 8x^3 - 48x^2$ on [-3, 1].

15. The second derivative of f is given by $f''(x) = (3x-1)(x+2)e^{15x}$. Find open intervals on which the graph of f is concave up.

16. Find the function f for which $f'(x) = e^x + \sqrt{x} + \frac{2}{x}$ and f(1) = 1.

17. Let f(x) = 2x. Use 6 subintervals of equal length and subinterval midpoints (for the c_k 's) to compute a Riemann sum for f on [1,4].

18. Evaluate the definite integral:

$$\int_0^2 (2x^3 - 7x^2 + 4x - 1) \, dx$$

19. Find the area of the region between the graph of $y = 1 + \sin x + \cos x$ and the x-axis

20. Use a *u*-substitution to evaluate the indefinite integral: $\int x(4x^2-1)^5 dx$

