Quiz 8

(1) This is a preview of the published version of the quiz

Started: Nov 1 at 1:12pm

Quiz Instructions

This quiz has three (3) multiple-choice problems and three (3) problems that require an exact numerical answer. For each problem that requires a numerical answer, the answer will be an integer. Each problem is worth one (1) or two (2) points.

Question 1

2 pts

Let $r(x) = \cos(-500x)$. Use the first derivative to determine whether r is increasing or decreasing at the point where x = 0.15.

 $P'(x) = -810 (-500x) \cdot (-500)$

Increasing .

= 500 sin (-500x)

Decreasing

P'(0.15) = 500 SIN (-75) ≈ 193.9 > 0

Question 2

2 pts

Suppose the function f(x) and its derivative f'(x) are defined for all real numbers. The only critical numbers of f(x) are x=-3 and x=1.5. Use this information and the information given below to find the unique relative maximum value of f(x).

$$f'(-8) = -5, \quad f'(-2) = 1.25, \quad f'(1) = 2, \quad f'(3) = -6, \quad f(-8) = 15, \quad f(1.5) = -1$$

- \

SEE ATTACHED SHEET

Question 3

2 pts

Let $g(x) = 5x^7 - 7x^6 + 8x - 1$. The graph of g has a single inflection point. Find the y-coordinate of the inflection point.

$$g'(x) = 35x^6 - 40x^5 + 8$$

$$5 \qquad g''(x) = 310x^{5} - 310x^{4} = 310x^{4}(x-1) = 0$$

$$\Rightarrow x = 0, x = 1$$

CD CD 1 CU

Question 4

2 pts

Use the second derivative to determine whether the graph of $y = x^3 + \sin(10x)$ is concave up or concave down at the point where x = 0.65. $\frac{dy}{dx} = 3x^3 + 10\cos(10x)$

Concave down

$$\frac{d^2y}{dx^2} = 6x - 100 \sin(10x)$$

$$\frac{d^2y}{dx^2}$$
 | x=0.65 $\approx -17.6 \Rightarrow CD$

Question 5

1 pts

Determine the horizontal asymptote of the graph of $y=rac{\sin x}{x}$.

$$\bigcirc x = 0$$

$$\bigcirc y = 1$$

$$y=0$$

O The graph does not have a horizontal asymptote.

Question 6

1 pts

Determine the limit:
$$\lim_{x \to \infty} \frac{\sqrt{4x^2 + x}}{1 - x} \bullet \frac{\sqrt{\sqrt{x^2}}}{\sqrt{x}} = \lim_{x \to \infty} \frac{\sqrt{4x^2 + x}}{\sqrt{x}} = \lim_{x \to \infty} \frac{\sqrt{4x^2 +$$

$$-2$$

$$\sqrt{X^{2}} = X \text{ For positive } X.$$

Quiz 8 - Question 2

THERE IS A RELATIVE

MAXIMUM AT X= 1.5.

f(1.5) = -1