Math 131 - Quiz 6 October 2, 2025

Name key Score

Show all work to receive credit. Supply explanations where necessary.

1. (2 points) Let $h(x) = \frac{f(x) + g(x)}{x}$. Given the following information, compute h'(2).

$$h'(x) = \frac{f'(0) = 7, \quad f(2) = -4, \quad f'(2) = 8, \quad g(0) = 0, \quad g(2) = -5, \quad g'(2) = 9}{\chi^{2}}$$

$$h'(a) = \frac{(8+9)(a) - (-4+(-5))(1)}{4} = \frac{34+9}{4} = \frac{43}{4}$$
2. (3 points) Find $\frac{d^2y}{dx^2}$ when $y = 6x^3 - 4x^2 + \cos x$.
$$\frac{dy}{dx} = \frac{18x^3 - 8x - 510}{4} \times \frac{36x - 8 - \cos x}{4}$$

3. (5 points) An object is launched vertically upward from over the edge of a building. The object's height (in meters) after t seconds is given by

$$s(t) = -4.9t^2 + 14.7t + 49.$$

Include units with your answer for each part of this problem.

(a) Determine the average rate of change the object's height over the interval from t=0 to t=3.

$$\frac{\Delta S}{\Delta t} = \frac{S(3) - S(6)}{3 - 6} = \frac{49 - 49}{3} = \frac{0}{3} = \frac{0}{3} = \frac{0}{3}$$

(b) Determine the object's velocity at time t = 4.

$$S'(t) = -9.8t + 14.7$$

 $S'(4) = -9.8(4) + 14.7 = \left[-24.5 \text{ m/sec} \right]$

(c) Determine the object's maximum height.

$$S'(t) = 0 \Rightarrow -9.8t + 14.7 = 0$$

 $t = \frac{14.7}{9.8} = 1.5 \text{ sec}$
 $S(1.5) = -4.9(1.5)^{2} + 14.7(1.5) + 49$