Math 131 - Test 2 Name ___Key
March 12, 2020 J Score

Show all work to receive full credit. Supply explanations where necessary. Use differentiation
rules for all derivatives, and do not simplify.

1. (6 points) The graph of y = f(z) is shown below.
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(a) Sketch the secant line through the indicated points at z = 2 and z = 4. Let m
be the slope of the secant line through those points. Estimate the value of m.
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(b) Which number is greatest: m, f/(2), or f'(4)?. Explain your reasoning.
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(c) Which number is least: m, f/(2), or f/(4)?. Explain your reasoning.
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2. (4 points) Which one of the following best describes the line tangent to the graph of
f(z) = 52'/% — 2 at the point (0,—2)? (Briefly explain, or show work, to receive full
credit.)

(a) The tangent line is horizontal.
The tangent line is vertical.
(c) A unique tangent line does not exist.

(d) The tangent line cannot be determined from the given information.
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3. (5 points) The graph of g(z) is shown below. Choose the lettered graph that best
represents the graph of ¢'(z). Explain your reasoning. Give at least two reasons to
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4. (6 points) The graph of y = f(z) is shown below. Give the z-coordinates of three
points at which f'(z) does not exist. For each point, very briefly say why f’ does not
exist.
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5. (5 points) Use the quotient rule to derive the formula for the derivative of y = cot z.

d d_ o sx (osw x\(é.u x) = (%) (co x)

- Co¥ = =

C*x * (AX Sin X | S\Q} X

- 31N A - Y X - (S\v\)\)( ¥ CoN\ x)
= T - o .
ST S X

-\ a 7%

= — = -3¢ X

Su\\3 X



6. Suppose you launch an object straight upward with a velocity of 64 ft/sec from over
the edge of the top of an 80-ft building. Use the position function

S(t) = —].6t2 + 'U()t + So,

where s represents height (in feet) at time ¢ (in seconds), to solve the following prob-
lems.

(a) (2 points) Determine the function that gives the obJect s height at time t.

(b) (2 points) Determine the average rate of change the object’s height over the
interval from ¢t = 0 to ¢t = 2. (Include units w1th your answer. )
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(c) (2 points) Determine the function that gives the object’s velocity at time ¢.
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(d) (2 points) Determine the object’s velocity after 4 seconds. (Include units with
your answer.)

V(YY) = -33(Y) +6Y = LM

(e) (2 points) What is the acceleration of the object?  (Include units with your an-
swer.)

Vi) = ald)-=

(f) (4 points) Determine the object’s maximum height. (Include.units with your
answer.)
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(g) (3 points) When does the object hit the ground?
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7. (6 points) Use the derivative to determine each point (both coordinates) on the graph
of y = z* — 222 + 3 at which the tangent line is horizontal.

dy ’ Hyx(W-\) =0

Yy () wst) =
Hoevz. Tan. LINE X=0, X=\ , X:-\

>%. /)

Ax M_,,_
\, 3
Hy-yx =0 @im(\%m ,2)

23 —322+4

‘8. (6 points) Find an equation of the line tangént to the graph of y = — Q= at
the point where z = 1. ' 2
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9. (7 points) Let h(z) = va* + 9. Identify two functions, f and g, so that h(z) = f(g(z)).
' Then use the chain rule to determine h'(z).
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10. (6 points) Let f(z) = 3zsinz. Find f"(z).

F'oy= 3swx + 3xcos X
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11. (12 points) The table below gives the values of the functions f and g and their deriva-
tives at selected values of z.

Lz [-2]-1] 2]
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(a) If h(z) = 4f(z) — 29(z) + 5, compute A'(—1).
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(b) If h(z) = f(z) - g(x), compute h'(—1).
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, compute h'(2).
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12. (20 points) Differentiate. Do not simplify.

(a) jr<7r +dr — 8f+17>
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