\qquad
\qquad

Show all work to receive full credit. For each problem, place your final answer in the box provided. Each problem is worth 5 points-up to 2 points for the answer and up to 3 points for the supporting work or explanation.

1. Determine the limit. Use algebraic techniques (not a graph, table, or L'Hôpital's rule) to show how you got your answer.

$$
\lim _{x \rightarrow 4}\left(\frac{\sqrt{x+5}-3}{x-4}\right)
$$

\square
2. Determine the limit. Show analytically (not with a graph or table) how you got your answer.

$$
\lim _{x \rightarrow 1^{-}}\left(\frac{2 x-2}{x^{2}-2 x+1}\right)
$$

3. Yes or No: Is g continuous at $x=0$? Use the definition of continuity to support your answer.

$$
g(x)=\left\{\begin{array}{cc}
\frac{\sin x}{x}, & x \neq 0 \\
1, & x=0
\end{array}\right.
$$

4. Let $f(x)=x-x^{2}$. Write $f^{\prime}(x)$ in the box, then use the limit definition of derivative to obtain your answer.
5. Let $f(x)=\frac{\tan x}{2 e^{x}}$. Compute $f^{\prime}(0)$.

6. A ball is thrown straight upward in such a way that its height (in feet) after t seconds is given by

$$
h(t)=-16 t^{2}+48 t+144
$$

How high is the ball one second after it reaches its maximum height?

7. Find $\frac{d y}{d x}$ if $y=\left(x^{2}+\tan ^{-1} x\right)^{3}$.
8. Find an equation of the line normal to the graph of $x^{3}+y^{2}=x y+3$ at the point $(1,2)$.
\square
9. Let $g(x)=\frac{(x+1)^{2}}{(x+3)^{4}}$. Use logarithmic differentiation to find $g^{\prime}(x)$.

10. Find the linearization of $f(x)=\ln x$ at $x=1$, and use it to approximate $\ln 1.05$.
11. The graph of $y=f(x)$ is shown below. Find each critical point of f and say why it is a critical point.

12. Use calculus techniques to find the absolute extreme values of $f(x)=x^{3}-6 x^{2}-6$ on $[-1,7]$.
13. The first derivative of f is given by $f^{\prime}(x)=x^{3}(x-1)(x+3)$. Locate the relative extreme values of f.

14. Find the inflection point(s) of the graph of $f(x)=x^{3}-6 x^{2}-6$.

15. Evaluate the limit: $\lim _{x \rightarrow 1} \frac{\ln x^{3}}{x^{2}-1}$
16. Find $f(x)$ if $f^{\prime}(x)=6 x^{2}+e^{x}-\sin x$ and $f(0)=5$.

17. Let $f(x)=\frac{1}{x}$. Use 4 subintervals of equal length and right endpoints of the subintervals to compute a Riemann sum for f on $[1,2]$.
18. Evaluate the definite integral.

$$
\int_{1}^{2}\left(\frac{1}{x}+2+x^{3}\right) d x
$$

19. Find the area of the region between the graph of $y=\sqrt{x}$ and the x-axis over the interval $[0,4]$.

20. In order to evaluate the following integral, an appropriate u-substitution should be made. Carry out the substitution and write the new integral. DO NOT EVALUATE the new integral.

$$
\int 5 x e^{-x^{2}} d x
$$

