Math 131 - Final Exam May 10, 2023

\qquad Score \qquad

Show all work to receive full credit. Supply explanations where necessary.

1. (10 points) Use algebraic techniques (not a graph, table, or L'Hôpital's rule) to determine each limit.
(a) $\lim _{r \rightarrow 1} \frac{\sqrt{r}-1}{r-1}$
(b) $\lim _{x \rightarrow 6} \frac{(x+3)^{2}-5(x+3)-x^{2}}{3(x-6)}$
2. (10 points) Use the definition of continuity to explain why f is discontinuous at $x=5$. Also state the type of discontinuity.

$$
f(x)= \begin{cases}4 x+5, & x<5 \\ x^{2}+x \cos (\pi x), & x \geq 5\end{cases}
$$

3. (10 points) Let $f(x)=x^{2}-4 x$. Use the limit definition of the derivative to determine $f^{\prime}(x)$. Show all work.
4. (10 points) Use basic differentiation rules to determine each derivative. Do not simplify.
(a) $\frac{d}{d x}\left(\frac{\tan ^{-1} x}{1+2 x+x^{2}}\right)$
(b) $\frac{d}{d x}\left[e^{-5 x^{2}} \cot x\right]$
5. (10 points) Let $f(x)=\sin (x)+\ln \left(x^{2}\right)$. Find the linearization of f at $x=1$. Then use your linearization to approximate $f(0.8)$. Write your answers with all numbers in decimal form, rounded to three places. (Make sure your calculator is in radian mode.)
6. (10 points) Use any analytical method (not a table or graph) to determine each limit.
(a) $\lim _{x \rightarrow-\infty}\left(\frac{3 x^{4}-5 x^{2}+8}{3 x^{2}+4 x^{4}+5 x^{4}}\right)$
(b) $\lim _{x \rightarrow 0}\left(\frac{x-\sin 5 x}{x^{2}}\right)$
7. (10 points) Use calculus techniques to find the absolute extreme values of $g(x)=x^{4}+4 x^{3}-20 x^{2}$ on the interval $[-2,3]$.
8. (10 points) Evaluate each definite integral. (You may need to use a substitution.)
(a) $\int_{1}^{2} \frac{1+t+t^{2}}{t^{3}} d t$
(b) $\int_{0}^{\pi}(1+\cos x)^{3} \sin x d x$
9. (10 points) The graph of $f(x)=e^{x^{2}}$ over the interval [1,2] is shown below. Use five subintervals of equal length and subinterval midpoints to compute the corresponding (middle) Riemann sum for f on $[1,2]$. Once you have computed the Riemann sum, sketch the corresponding rectangles on the graph.

10. (10 points) The graph of $y=x^{2}-3 x+2$ is shown below.

(a) By solving $y=0$ (Show your work!), show algebraically that the x-intercepts of the graph agree with those shown.
(b) Use the fundamental theorem of calculus to find the area of the shaded region.
