Math 131 - Assignment 11
April 24, 2024

Name
\qquad

Show all work to receive full credit. Supply explanations when necessary. Use extra paper as necessary. This assignment is due May 1.

1. Find the function f that satisfies $f^{\prime}(x)=9 x^{2}-3 x+4 \sin x$ and $f(0)=7$.
2. Let $f(x)=\sin (x)$. Use 4 subintervals of equal length and right endpoints to compute the corresponding right Riemann sum for f over the interval $[1,2]$.
3. Let $f(x)=\frac{1}{x}$. Use 6 subintervals of equal length and subinterval left endpoints to compute the corresponding Riemann sum for f over the interval $[1,4]$.
4. Use 4 subintervals of equal length and subinterval midpoints to compute a Riemann sum for $f(x)=\sin \left(x^{2}\right)$ on the interval $[0,1]$.
5. Use the area concept (not a Riemann sum or antidifferentiation) to evaluate $\int_{0}^{2}(2 x+1) d x$. Show your work.
6. Sketch the graph of $y=|x-3|$ over the interval from $x=0$ to $x=4$. Then use area (not a Riemann sum or antidifferentiation) to determine the value of the definite integral $\int_{0}^{4}|x-3| d x$.
7. Use the fundamental theorem of calculus to evaluate each definite integral.
(a) $\int_{0}^{\pi / 2}(x+\sin x) d x$
(b) $\int_{1}^{2} \frac{1+x}{x} d x$
(c) $\int_{0}^{\pi} \cos x d x$
(d) $\int_{1}^{2}\left(\frac{1}{x}-e^{x}\right) d x$
8. Use a definite integral to find the area of the bounded region above the x-axis and below the graph of $y=3 x-x^{2}$.
