Math 131 - Assignment 4

February 14, 2024

Name \qquad
Score \qquad

Show all work to receive full credit. Evaluate all limits analytically. Supply explanations when necessary. This assignment is due February 21.

1. Let $f(x)=2-x+\sin x$. Find an interval of length one that contains a solution of the equation $f(x)=0$. Then use the Intermediate Value Theorem to explain how you know.
2. Use the limit definition of derivative to determine $f^{\prime}(x)$ when $f(x)=3 x^{2}-x+1$. (Use extra paper as necessary.)
3. Let $f(x)=\sqrt{x^{2}+16}$. We will soon learn that $f^{\prime}(x)=\frac{x}{\sqrt{x^{2}+16}}$. For now, just use the given information to find an equation of the line tangent to the graph of f at the point where $x=3$.
4. Use the limit definition of derivative to determine $f^{\prime}(x)$ when $f(x)=\frac{1}{x}$. (Use extra paper as necessary.)
5. The graph of $y=f(x)$ is shown below. Give the x-coordinates of three points at which $f^{\prime}(x)$ does not exist. For each point, very briefly say why f^{\prime} does not exist.

6. Use basic derivative rules (not the definition) to find each derivative.
(a) $\frac{d}{d x}\left(7 x^{3}-10+\sqrt[3]{x}-\frac{7}{x^{3}}\right)$
(b) $\frac{d}{d x}(5 \sin x-12 \cos x)$
(c) $\frac{d}{d x} \frac{5 x^{4}+8 x-3}{x^{2}}$ (Do not use the quotient rule. Use algebra to rewrite the expression before you differentiate.)
7. The graph of $y=f(x)$ is shown below.

(a) Sketch the secant line through the indicated points at $x=2$ and $x=4$. Let m be the slope of the secant line through those points. Estimate the value of m.
(b) Sketch the tangent line through the point where $x=2$. Use your tangent line to estimate $f^{\prime}(2)$.
(c) Sketch the tangent line through the point where $x=4$. Use your tangent line to estimate $f^{\prime}(4)$.
8. Find an equation of the line tangent to the graph of $y=\sqrt{x}+\frac{1}{\sqrt{x}}$ at the point where $x=4$.
