Math 131 - Assignment 7

Name _____

March 20, 2024

Score _____

Show all work to receive full credit. Supply explanations when necessary. Use extra paper as necessary. This assignment is due March 27.

1. Suppose f and f^{-1} are differentiable functions. The table below shows the values of f(x) and f'(x) at selected values of x. Find $(f^{-1})'(3)$. Show how you got it.

x	0	1	2	3
$\int f(x)$	5	3	7	2
f'(x)	0	8	4	1

2. Let $g(x) = (\cos^{-1} x)^2$. Find the <u>exact value</u> of g'(1/2). Simplify your answer as much as possible.

3. Find h'(x) if $h(x) = \log_5[(6x^2 + 4)^9]$.

4. Find dy/dx if $y = x^3 e^{\cot x}$.

5. Use logarithmic differentiation to find dy/dx when $y = (\sin x)^x$.

6. Let $f(x) = \ln(x^2 + 1)$. Find f'(x) and use it to determine a point at which the graph's tangent line is horizontal.

7. Find g''(x) if $g(x) = e^{-5x^2}$.

8. Use logarithmic differentiation to find $\frac{dy}{dx}$ when $y = \frac{(x+1)^2(x^3+1)}{4x^2(x-5)}$.

9. Find
$$\frac{dy}{dx}$$
 if $y = \tan^{-1}(\sqrt{x})$.

10. Find f'(x) if $f(x) = e^{x \ln x}$.

11. Find an equation of the line tangent to the graph of $y = 2^{x^3}$ at the point where x = 1.