Math 131 - Test 3

April 10, 2024

Name \qquad Score \qquad

Show all work to receive full credit. Supply explanations where necessary.

1. (6 points) Let $f(x)=x^{5}+x^{3}-30$. Find $f^{-1}(10)$ and then find $\left(f^{-1}\right)^{\prime}(10)$. (You must show work to get points.)
(a) $f^{-1}(10)=2 \quad$ and $\quad\left(f^{-1}\right)^{\prime}(10)=\frac{1}{92}$
(b) $f^{-1}(10)=100970 \quad$ and $\quad\left(f^{-1}\right)^{\prime}(10)=\frac{1}{50300}$
(c) $f^{-1}(10)=30 \quad$ and $\quad\left(f^{-1}\right)^{\prime}(10)=50300$
(d) $f^{-1}(10)=2 \quad$ and $\quad\left(f^{-1}\right)^{\prime}(10)=\frac{1}{40}$
2. (4 points) Let $h(x)=\sin ^{-1}(f(x))$. With the information below, compute $h^{\prime}(3)$.

$$
f(1)=\frac{1}{3}, \quad f^{\prime}(1)=\frac{\sqrt{5}}{2}, \quad f(3)=\frac{\sqrt{3}}{2}, \quad f^{\prime}(3)=\frac{1}{2}
$$

3. (6 points) Determine each derivative.
(a) $\frac{d}{d x}\left[x \cot ^{-1}\left(x^{2}\right)\right]$
(b) $\frac{d}{d t}\left(\frac{5}{e^{\sqrt{t}}}\right)$
4. (5 points) Find the slope of the line tangent to the graph of $y=\log _{8}\left(x^{3}+x\right)$ at the point where $x=2$. Write your final answer in decimal form, rounded to the nearest thousandth.
5. (8 points) Use logarithmic differentiation to find $\frac{d y}{d x}$ when $y=\frac{2 x^{5}}{\sqrt{x+1}\left(x^{2}+1\right)}$
6. (4 points) Find the instantaneous rate of change of $g(x)=2^{3 x+1}$ at the point where $x=1$.
7. (6 points) A particle is moving along the graph of $x^{2}+y^{3}=3$ in such a way that $\frac{d y}{d t}=-8$. Find $\frac{d x}{d t}$ when $x=2$.
8. (6 points) A big block of ice is in the shape of a perfect cube. As it melts, the length of each edge of the cube is decreasing at a rate of $2 \mathrm{~cm} / \mathrm{hr}$. At what rate is the block's volume changing when the side length is 20 cm ?
9. (5 points) Find the linearization of $f(x)=\tan ^{-1} x$ at $x=1$. Then use your linearization to approximate $f(0.92)$.
10. (6 points) Let $y=e^{4 x} \cos x$. Determine the differential $d y$. Then use differentials to estimate Δy when x changes from $x=0$ to $x=0.94$.
11. (6 points) Explain what it means to be a critical number for a function f. Then say what you would look for on the graph of f if you were trying to use the graph to identify critical numbers.
12. (6 points) Let $h(x)=x \sqrt{2 x+1}$. Find all x-values for which $h^{\prime}(x)=0$ or $h^{\prime}(x)$ DNE. Then say which of those values are critical numbers.
13. (8 points) Use calculus techniques to find the absolute maximum and minimum values of $f(x)=3 x^{4}+2 x^{3}-3 x^{2}$ on $[-2,1]$.
14. (13 points) Let $f(x)=\frac{1}{5} x^{5}-x^{4}-\frac{5}{3} x^{3}+17$.
(a) Find the critical numbers of f.
(b) Use calculus techniques to find open intervals on which f is increasing/decreasing.
(c) Identify all relative extreme values.
15. (5 points) Use the 2 nd derivative to determine whether the graph of $r(x)=x^{3}+\sin (10 x)$ is concave up or concave down at the point where $x=0.65$.
16. (6 points) The graph of f is shown below. For each part of this problem, find a labeled point that satisfies the given condition.

(a) $f^{\prime \prime}(x)=0$
(b) $f^{\prime}(x)=0$
(c) $f^{\prime \prime}(x)<0$
(d) $f(x)<0$
(e) $f^{\prime}(x)>0$
(f) $f^{\prime \prime}(x)>0$
