Math 131 - Final Exam
May 8, 2024

Name \qquad
Score \qquad

Show all work to receive full credit. Supply explanations where necessary.

1. (10 points) Use algebraic techniques (not a graph, table, or L'Hôpital's rule) to determine each limit. You may need to use $+\infty,-\infty$, or DNE.
(a) $\lim _{y \rightarrow 0} \frac{y}{(y+6)^{2}-36}$
(b) $\lim _{x \rightarrow 3} \frac{x^{2}+9}{\left(x^{2}-9\right)^{2}}$
2. (10 points) Carefully explain why f is NOT continuous at $x=4$. Then state the type of discontinuity and further explain how f could be made continuous at that point.

$$
f(x)= \begin{cases}x^{2}-5 x+5, & x<4 \\ 4 \cos (\pi x) / x, & x>4\end{cases}
$$

3. (10 points) Let $f(x)=3 x-x^{2}$. Use the limit definition of the derivative to determine $f^{\prime}(x)$. Show all work.
4. (10 points) Use basic differentiation rules to determine each derivative. Do not simplify.
(a) $\frac{d}{d x}\left(\frac{e^{2 x}}{x^{2}+1}\right)$
(b) $\frac{d}{d w} \sin ^{-1}(\sqrt{w})$
5. (10 points) Use logarithmic differentiation to compute $d y / d x$.

$$
y=\frac{x^{2}+1}{x^{2}(x+3)}
$$

6. (10 points) Two cars are driving away from an intersection, one heading due east and the other heading due north. When both cars are 2 miles from the intersection, the eastbound car is traveling at 50 mph and the distance between the cars is increasing at 80 mph . Find the speed of the northbound car.
7. (10 points) Let $f(x)=x^{4}-4 x^{3}$.
(a) Use the 1st derivative test to determine all relative extreme values.
(b) Use the 2 nd derivative test to determine open intervals on which the graph of f is concave up/down.
(c) Draw a rough sketch of the graph of f being sure that your graph shows the features you've found above.
8. (10 points) Use any analytical method (not a table or graph) to determine each limit.
(a) $\lim _{x \rightarrow \infty} 5 x e^{-x}$
(b) $\lim _{x \rightarrow 0}\left(\frac{x^{2}-2+2 \cos x}{x^{4}}\right)$
9. (10 points) For each part of this problem, set up and evaluate an appropriate definite integral.
(a) Find the average value of $f(x)=\frac{2}{x}+\sqrt[4]{x}$ on $[1,16]$.
(b) Find the area of the fourth quadrant region between the x-axis and the graph of $y=x^{2}-5 x+6$.
10. (10 points) Evaluate each integral. (You may need to use a substitution.)
(a) $\int\left(e^{x}+\frac{1}{1+x^{2}}+\sec ^{2} x\right) d x$
(b) $\int_{0}^{\pi} \cos ^{4} x \sin x d x$
