
Math 132 - Quiz 2 January 27, 2021

Name Key Score

Show all work to receive full credit. Supply explanations when necessary. This quiz is due February 3.

1. (2.5 points) The base of a solid is the region bounded by the graphs of y = 3x, y = 6, and x = 0. The cross sections perpendicular to the x-axis are rectangles of constant height 10. Find the volume of the solid.

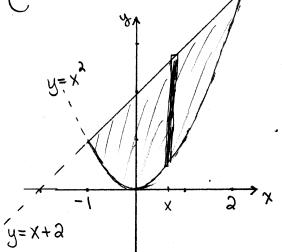
Area of cross section at
$$X$$

$$= (Height at $X)(Length at X)$

$$= (10)(6-3X)$$$$

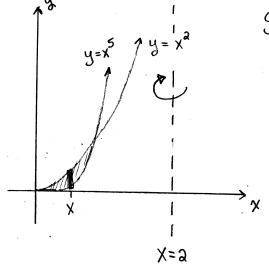
Volume =
$$\int_{0}^{3} (60-30x) dx$$

= $60x - 15x^{3} \Big|_{0}^{3} = 60$


2. (2.5 points) The region bounded by the graphs of x + 2y = 2, x = 0, and y = 0 is rotated about the y-axis. Find the volume of the solid that is generated.

$$y = 0$$

$$X =$$



3. (2.5 points) The region bounded by the graphs of $y = x^2$ and y = x + 2 is rotated about the line y = 4. Find the volume of the solid that is generated.

$$x_3 - x - 3 = (x - 3)(x + 1) = 0$$

 $x_3 - x - 3 = (x - 3)(x + 1) = 0$

- VOLUME = $\pi \int (4-x^2)^3 (4-(x+2))^3 dx$ = $\pi \int (16-8x^2+x^4-(4-4x+x^2)) dx$ = $\pi \int (12+4x-9x^2+x^4) dx =$
- (x-a)(x+1) = 0 x = a , x = -1 $= \pi \left(|2x + 2x 3x + \frac{1}{5}x \right) \Big|_{-1}^{3} = \pi \left(\frac{7a}{5} + \frac{36}{5} \right)$ 4. (2.5 points) The 1st-quadrant region bounded by the graphs of $y = x^2$ and $y = x^5$ is rotated about the line x = 2. Find the volume of the solid that is generated.

$$x^{2} = x^{5}$$

$$x^{2}(x^{3}-1) = 0$$

$$x = 0, x = 1$$

SHEUS ...

Volume =
$$2\pi \int_{0}^{1} (3-x)(x^{2}-x^{5}) dx$$

= $2\pi \int_{0}^{1} (3x^{2}-3x^{5}-x^{3}+x^{6}) dx$
= $2\pi \left(\frac{3}{3}x^{3}-\frac{1}{3}x^{6}-\frac{1}{4}x^{4}+\frac{1}{7}x^{7}\right)$
= $2\pi \left(\frac{3}{3}-\frac{1}{3}-\frac{1}{4}+\frac{1}{7}\right)$
= $2\pi \left(\frac{19}{84}\right) = \frac{19\pi}{42}$