$\frac{\text{Math 153 - Quiz 9}}{\text{November 6, 2014}}$

Name _	key	
	J	Score

Show all work to receive full credit. Supply explanations when necessary.

- 1. (5 points) You write the population values 1, 2, 3, 4 on slips of paper and put them in a box. Then you randomly choose two slips of paper with replacement.
 - (a) List all possible samples along with the mean of each sample.

$$\{1,1\}$$
 -- 1 $\{3,1\}$ -- 1.5 $\{3,1\}$ -- 0.5 $\{3,1\}$ -- 0.5 $\{3,3\}$ -- 1.5 $\{3,3\}$ -- 0.5 $\{3,3\}$ -- 0.5 $\{3,3\}$ -- 0.5 $\{3,3\}$ -- 0.5 $\{3,3\}$ -- 0.5 $\{3,3\}$ -- 0.5 $\{3,3\}$ -- 0.5 $\{3,3\}$ -- 0.5 $\{3,3\}$ -- 0.5 $\{3,3\}$ -- 0.5 $\{3,3\}$ -- 0.5 $\{3,3\}$ -- 0.5 $\{3,3\}$ -- 0.5 $\{3,4\}$

(b) Determine the probability distribution for your sample means.

(c) Find the mean of the sampling distribution.

$$\mu_{\bar{x}} = 1\left(\frac{1}{16}\right) + 1.5\left(\frac{2}{16}\right) + 3\left(\frac{3}{16}\right) + 3.5\left(\frac{4}{16}\right) + 3.5\left(\frac{3}{16}\right) + 3.5\left(\frac{2}{16}\right) + 4\left(\frac{1}{16}\right)$$

$$= 3.5$$

(d) Find the population mean.

$$\mu = \frac{1 + 3 + 4}{4} = \frac{10}{4} = 3.5$$

(e) Compare the population mean and the mean of the sampling distribution.

AMAZING :
$$\mu_{\bar{\chi}} = \mu$$

THE SAMPLING MEAN TAZGETS THE POPULATION MEAN.

2. (2.5 points) The lengths of time employees have worked at a corporation are normally distributed with mean 11.2 years and standard deviation 2.1 years. In a company cutback, the lowest 10% in seniority are laid off. What is the maximum length of time an employee could have worked and still be laid off?

3. (2.5 points) A machine is set to fill cans with a mean volume of $500\,\mathrm{cm^3}$ and a standard deviation of $4.3\,\mathrm{cm^3}$. In a random sample of 35 cans, find the probability that the mean volume is greater than $503\,\mathrm{cm^3}$.

NORMAL
SAMPLING.
$$\mu_{\overline{X}} = 500$$

 $\sim - 4.3$

$$P(\bar{x} > 503) = normalcdf(503, 99999, 500, 4.3/\sqrt{35})$$

 $\approx 1.83 \times 10^{-5}$