Math 153 -	- Quiz	11
------------	--------	----

November 23, 2017

Name key Score

Show all work to receive full credit. Supply explanations when necessary. You must work individually.

1. (5 points) In examining a simple random sample of 150 sales invoices from a previous year, a researcher finds that 62% of them involved sales of less than \$2000 worth of merchandise. Construct a 90% confidence interval estimate for the true proportion of all sales invoices for less than \$2000 in merchandise. Give an interpretation of your interval in a complete sentence.

$$\eta = 150$$

 $\hat{p} = 0.63$

C-Level = 0.90

WE ARE 90% CONFIDENT THAT THE POPULATION PROPORTION OF SALES LESS THAN \$ 2000 IS BETWEEN 55.5% AND 68.5%.

2. (2 points) In the problem above, what sample size would be required for a margin of error of 1%?

$$C-\text{Leve} = 0.90$$

 $\Rightarrow \alpha = 0.10$
 $\alpha/a = 0.05$

$$Z_{a/a} = i_{nv} N_{orm} (0.95) \approx 1.645$$

$$N = \frac{(1.645)^{a} (0.6a)(0.38)}{(0.01)^{a}} \approx 6375.4$$

$$C_{Hoogs} = N = 6376$$
e, what sample size would be required for a margin of

3. (1 point) In the problems above, what sample size would be required for a margin of error of 1% if no sample proportion had been previously obtained?

$$n = \frac{(1.645)^{2}(0.05)}{(0.01)^{2}} \approx 6765.1$$

4. (2 points) A confidence interval for a population mean is given by (68.114, 69.886). Find the point estimate for the population mean and the margin of error.

$$E = (69.886 - 68.114) \div 2$$

$$= (0.886)$$