Math 157 - Quiz 3

September 10, 2014

Name .	key		
	J	Score	

Show all work to receive full credit. Supply explanations when necessary.

1. (2 points) Suppose f is a continuous function whose value at x=5 is pretty close to 1.75. What can you say about its value at x=4.999999? Explain your reasoning.

Since f is continuous, small changes in input result in small changes in output. Therefore, All we can really say is that f(4.999999) is close to $f(5)\approx 1.75$.

2. (3 points) Use algebra to find the limit analytically.

$$\lim_{x \to 5} \frac{x^2 - 7x + 10}{x^2 - 4x - 5} = \frac{1}{100} \frac{(x - 5)(x - 3)}{(x - 5)(x + 1)}$$

$$= \frac{1}{100} \frac{(x - 5)(x - 3)}{(x - 5)(x + 1)}$$

$$= \frac{1}{100} \frac{(x - 5)(x - 3)}{(x - 5)(x + 1)}$$

$$= \frac{1}{100} \frac{(x - 5)(x - 3)}{(x - 5)(x + 1)}$$

3. (3 points) What is the easiest way to compute $\lim_{x\to 1} (3x^2 - 7x + 8)$? Why does your method work?

SUBSTITUTE X=1 INTO THE EXPRESSION.

$$\lim_{X \to 1} (3x^2 - 7x + 8) = 3(1)^2 - 7(1) + 8$$

$$= \boxed{4} \quad \text{IT works Because The}$$

4. (2 points) Use a table of values to estimate the limit.

FUNCTION 15 CONTINUOUS.

<u> </u>	5 × - 1 4 x	$\lim_{x \to 0} \frac{5^x - 1}{4x}$
0.1	0.4365	
0.01	0.4056	LOOKS LIKE
0.001	0.4027	5×-1
-0.1	0.3717	1m 3-1 & 0.402
-0.01	0.3991	
-0.00/	0.4000	