\qquad

Show all work to receive full credit. Supply explanations where necessary.

1. (8 points) Find an equation of the line tangent to the graph of

$$
f(x)=x^{3}-5 x^{2}+4 x+6
$$

at the point where $x=1$.
2. (5 points) The graph of the function f is shown below. Referring to this graph, arrange the following quantities in ascending order.

$$
f^{\prime}(1), \quad f^{\prime}(5), \quad f(5), \quad f(7), \quad f^{\prime}(3)
$$

3. (20 points) Determine the derivative of each function.
(a) $y=8 t^{3}-4 t^{2}+12 t-3$
(b) $f(x)=\sqrt{\frac{1}{x^{3}}}$
(c) $P=\ln \left(t^{2}+1\right)$
(d) $w=\left(5 r^{2}-8\right)^{4}$
(e) $g(x)=\left(x^{3}-7 x^{2}+1\right) e^{x}$
4. (7 points) A glass of water is placed in a hot, dry room where the water begins to quickly evaporate. The height, in centimeters, of the water in the glass after t hours is given by

$$
h(t)=20-0.094 t^{2} .
$$

Compute $h(6)$ and $h^{\prime}(6)$. Using units, explain what each of these values represents.
5. (6 points) Given that $f(1)=4$ and $f^{\prime}(1)=5$, find $g^{\prime}(1)$ if $g(x)=\sqrt{f(x)}$.
6. (7 points) Find the critical numbers of $f(x)=\left(x^{2}-4\right)^{3}$.
7. (7 points) Since the beginning of 1990, the population of Aurora, IL has been approximately given by

$$
P(t)=101(1.03)^{t}
$$

where t represents years since 1990 and P is in thousands of people. At what rate will the population be changing in 2025? Include units with your answer.
8. (12 points) Find the second derivative of each function.
(a) $h(x)=x^{4}+5 x^{2}+e^{-3 x}$
(b) $r(x)=2 x+2 \ln x$
9. (7 points) Find the instantaneous rate of change of $y=x^{2} e^{5 x}$ at the point where $x=-1$.
10. (7 points) Consider the function $y=h(x)$ whose graph is shown below. The domain of h is the closed interval $[-1,1]$. Find the critical numbers of h and explain why they are critical numbers.

11. (8 points) The table below gives the values of the functions f and g and their derivatives at selected values of x.

x	-2	-1	2
$f(x)$	1	3	-2
$f^{\prime}(x)$	2	-1	-1
$g(x)$	2	0	-2
$g^{\prime}(x)$	-3	-2	1

(a) If $h(x)=f(x) \cdot g(x)$, use the product rule to compute $h^{\prime}(-1)$.
(b) If $h(x)=\frac{f(x)}{g(x)}$, use the quotient rule to compute $h^{\prime}(2)$.
12. (6 points) For a function $f(x)$, we know that $f(10)=8$ and $f^{\prime}(10)=3$. Use this information to find a reasonable estimate for $f(9)$.
13. (5 points extra credit) Find the critical numbers of $g(x)=(x-2)^{2}(2 x-9)$.
14. (5 points extra credit) Find the second derivative of $w=\frac{3 y-y^{2}}{5+y}$.

