\qquad

Show all work to receive full credit. Supply explanations where necessary.

1. (14 points) Let $f(x)=2 x^{3}-3 x^{2}-36 x+10$. Find open intervals on which f is increasing/decreasing. Then find and classify all local (relative) extreme values.
2. (8 points) In solving an optimization problem, Joe found that $x=1$ is a critical number of the function $P(x)=2 x+\frac{2}{x}$. Use calculus to show that Joe's critical number minimizes P.
3. (6 points) The graph of f is shown below. For each part of this problem, find a labeled point that satisfies the given condition.

(a) $f^{\prime \prime}(x)=0$
(b) $f^{\prime}(x)=0$
(c) $f^{\prime \prime}(x)<0$
(d) $f(x)<0$
(e) $f^{\prime}(x)>0$
(f) $f^{\prime \prime}(x)>0$
4. (6 points) When the production level is 5000 units, marginal revenue is $\$ 5.15$ per unit and marginal cost is $\$ 5.75$ per unit. Do you expect maximum profit to occur at a production level above or below 5000 units? Explain your reasoning.
5. (8 points) Find the inflection point(s) of the graph of $g(x)=x e^{-x}$.
6. (8 points) Find the global (absolute) extreme values of $f(x)=2 x^{3}-9 x^{2}+12 x$ on the interval $-0.5 \leq x \leq 3$.
7. (6 points) Suppose f has a continuous derivative whose values are given in the table below.

x	-5	-4	-3	-2	-1	0	1	2	3	4	5
$f^{\prime}(x)$	6	2	1	-1	-4	-5	-2	1	3	2	-1

(a) Find reasonable estimates for the critical numbers of f.
(b) Determine whether each one of your critical numbers gives a local (relative) minimum or maximum. Briefly explain how you know.
8. (8 points) The revenue from selling q items is $R(q)=800 q-q^{2}$, and the total cost is $C(q)=150+12 q$. Find the quantity that maximizes profit.
9. (8 points) The velocity, v, of an object at time t is described in the table below.

$t(\mathrm{sec})$	0	1	2	3	4	5	6
$v(\mathrm{ft} / \mathrm{sec})$	3	6	10	16	22	20	18

(a) Use a right sum with $\Delta t=2$ to estimate the total distance traveled by the object.
(b) Use a left sum with $\Delta t=1$ to estimate the total distance traveled by the object.
(c) Which of your approximations do you think better estimates the distance traveled? Why?
10. (8 points) Use a left sum with 4 subintervals (rectangles) of equal width to estimate $\int_{0}^{1} e^{-x^{2}} d x$.
11. (5 points extra credit) The quantity of a drug in the bloodstream t hours after a tablet is swallowed is given, in milligrams, by

$$
Q(t)=25\left(e^{-t}-e^{-2 t}\right) .
$$

What is the maximum quantity of the drug in the bloodstream?
12. (5 points extra credit) Sketch the graph of $f(x)=x+2$ over the interval from $x=0$ to $x=3$. Then use area to compute the exact value of $\int_{0}^{3}(x+2) d x$. Show all work or explain your reasoning.
\qquad
Score

Show all work to receive full credit. Supply explanations where necessary. You must work INDIVIDUALLY ON THIS EXAM.

1. (10 points) A landscape architect plans to enclose a 4000 square-foot rectangular region in a botanical garden. She will use shrubs costing $\$ 30$ per foot along three sides and flowers costing $\$ 10$ per foot along the fourth side. Determine a function giving the total cost of the project and then find the minimum cost.
2. (7 points) Use a left or right sum with 8 subintervals (rectangles) of equal width to estimate $\int_{0}^{2} \frac{1}{1+t^{2}} d t$. Then use your calculator to estimate the value of the definite integral.
3. (3 points) The graph of f is shown below. Find a reasonable estimate for $\int_{0}^{7} f(x) d x$.

