\qquad
\qquad

Show all work to receive full credit. Supply explanations when necessary.

1. Use the quadratic formula to find the exact solutions of $x^{2}-4 x+1=0$.
2. Use your calculator to find the two smallest positive solutions of $x \sin x=1$.
3. Simplify. Then find all values of x for which $f(x)=0$ or $f(x)$ DNE.

$$
f(x)=\frac{(12 x+8)(x+1)^{3 / 2}-\left(9 x^{2}+12 x\right)(x+1)^{1 / 2}}{4(x+1)^{3}}
$$

4. Let $y=f(x)=x^{3}-2 x+1$. Find and simplify an expression for $\Delta y=f(x+\Delta x)-f(x)$.
5. Without using your graphing calculator, sketch the graphs of $f(x)=4 x-x^{2}$ and $g(x)=x^{2}-3 x$. Then write and solve the equation that gives the x-coordinates of the two points of intersection.

6. Make sure your calculator is in radian mode. Construct a table showing the values of f at $x= \pm 0.1, \pm 0.01, \pm 0.001, \pm 0.0001$.

$$
f(x)=\frac{3 x^{2}}{\tan 4 x^{2}}
$$

What is a reasonable estimate for the limit at $x=0$?
7. Sketch the graph of a function f for which $f(1)=2$ but $\lim _{x \rightarrow 1} f(x)=3$.

