Math	1	71	_	Quiz	9
Novemb	er	11,	20	010	

Name Key Score

Show all work to receive full credit. Supply explanations when necessary.

1. (2 points) On earth, the acceleration due to the force of gravity is given by $g = \frac{Gm}{r^2}$, where G is the gravitational constant, m is the mass of the earth, and r is the radius of the earth. Not worrying about the units, let's say G and m are measured exactly (no error):

 $G = 6.67428 \times 10^{-11}$ and $m = 5.97370 \times 10^{24}$.

Depending on how it is measured, the radius of the earth is between 6.357×10^6 and 6.378×10^6 . Use the average of these two numbers as your value for the radius. Compute g, and use differentials to approximate the error in your value.

$$\Gamma = 6.3675 \times 10^{\circ}, \quad \Delta \Gamma = 0.0105 \times 10^{\circ}$$

$$g = \frac{Gm}{r^{3}} \Rightarrow dg = \frac{-2Gm}{r^{3}} dr$$

$$\Delta g \approx \frac{-2Gm}{r^{3}} \Delta r$$

$$g = \frac{(6.67428 \times 10^{-11})(5.97370 \times 10^{34})}{(6.3675 \times 10^{6})^{2}}$$

$$= 9.83354$$

 $\Delta g \approx \frac{-3 \, Gm}{r^3} \, \Delta r = -0.03343$

2. (3 points) Evaluate each indefinite integral.

(a)
$$\int (3x^2 - 7x)^2 dx$$

$$= \int (9x^{4} - 42x^{3} + 49x^{a}) dx$$

$$= \frac{9}{5}x^{5} + \frac{42}{4}x^{4} + \frac{49}{3}x^{3} + C$$

(b)
$$\int [4\sin(2x) + 7\cos(3x)] dx$$

$$= -\frac{4}{2}\cos 3x + \frac{7}{3}\sin 3x + C$$

$$f(x) = -(x-1)(x-3)$$

- 3. (5 points) Let $f(x) = -x^2 + 3x 2$. Your goal is to use 4 rectangles (of equal base length) to estimate the area of the region bounded between the graph of y = f(x) and y = 0.
 - (a) Under-estimate the area with rectangles underneath the curve. Draw the corresponding picture.

$$\Delta X = \frac{3-1}{4} = \frac{1}{4} = 0.35$$

UNDER ESTIMATE 15

0.25
$$f(1)$$
 + 0.25 $f(1.25)$
+ 0.25 $f(1.75)$ + 0.25 $f(a)$
= 0.09375

(b) Over-estimate the area with rectangles above the curve. Draw the corresponding picture.

$$\Delta \chi = 0.95$$

OVER ESTIMATE IS

$$0.35 f(1.35) + 0.35 f(1.5)$$

$$+ 0.35 f(1.5) + 0.35 f(1.75)$$

$$= 0.21875$$