<u>Math 171 - Test 1</u>

September 23, 2010

Name _	keu	
	J	Score

Show all work to receive full credit. Supply explanations where necessary. When evaluating limits, you may need to use $+\infty$, $-\infty$, or DNE (does not exist).

1. (4 points) Use a table of numerical values to estimate the following limit.

$$\frac{3(1-\cos^{2}x)}{5x} |_{1S \text{ AN}} \qquad \lim_{x\to 0} \frac{3(1-\cos^{2}x)}{5x} \qquad \qquad X \qquad \frac{3(1-\cos^{2}x)}{5x} \\ \text{ODD FUNCTION.} \qquad \qquad \frac{\pm 0.1}{5x} \qquad \pm 0.0598 \\ \text{Lince} \qquad \qquad \pm 0.0059998 \\ \text{Lince} \qquad \qquad \pm 0.001 \qquad \pm 0.0006 \\ \text{Simultaneously.} \qquad \qquad \text{Is } O. \qquad \pm 0.0001 \qquad \pm 0.00066$$

- 2. (10 points) Suppose that $\lim_{x\to 2} f(x) = 3$ and $\lim_{x\to 2} g(x)$ exists. Determine each limit.
 - (a) $\lim_{x \to 2} (x^2 f(x) + g(x) \sin \pi x)$ = $g_s\left(\frac{x \to s}{lim} f(x)\right) + \left(\frac{x \to s}{lim} g(x)\right) \sin s \pi$ = 4.3 + (Some #)(0) = /2
 - (b) $\lim_{x \to 2} g(x)$ if $\lim_{x \to 2} \frac{1}{(g(x))^2} = 5$

RECIPROCAL
$$\Rightarrow \left(\lim_{X \to a} g(x)\right)^2 = \frac{1}{5} \Rightarrow \lim_{X \to a} g(x) = \boxed{\frac{1}{\sqrt{5}}}$$

(c) $\lim_{x\to 2} g(x)$ if $\lim_{x\to 2} \frac{f(x)}{g(x)}$ does not exist

Only way This is possible is IF

3. (5 points) Each row of the table below gives some information about a function f. Fill in each blank entry with an appropriate word or number. In some cases there may be more than one correct answer.

Continuous at $x = 2$	f(2)	$\lim_{x \to 2^-} f(x)$	$\lim_{x \to 2^+} f(x)$
Yes	5	5	5
No	7	Any# But 7	7
No	Any # BUT -1	-1	-1
YES	2	2	2
Yes	1	1	

- 4. Consider the function $f(x) = 2x^2 + x$.
 - (a) (10 points) Use the limit definition of the derivative to find f'(x).

$$f(x) = \lim_{h \to 0} \frac{h}{f(x+h) - f(x)} = \lim_{h \to 0} \frac{h}{\left[3(x+h)_3 + (x+h)\right] - \left[3x_3 + x\right]}$$

$$= \lim_{h \to 0} \frac{3x^2 + 4xh + 3h^2 + x + h - 3x^2 - x}{h}$$

$$=\lim_{h\to 0}\frac{4xh+3h^2+h}{h}=\lim_{h\to 0}\left(4x+3h+1\right)$$

(b) (5 points) Find an equation of the line tangent to the graph of f at the point where x = -2.

$$X = -a \Rightarrow y = f(-a) = 6$$

$$S_{LOPE} = f'(-a) = -7$$

Line:
$$y-6 = -7(x+2)$$

or

 $y = -7x - 8$

5. (24 points) Determine each limit or explain why the limit does not exist.

(b)
$$\lim_{x \to 0} \left(\frac{7x^2 - \sin(4x)\cos(9x)}{4x} \right) = \lim_{X \to 0} \left(\frac{7x^2}{4x} - \frac{\sin 4x}{4x} \cos 9x \right)$$

$$= \lim_{X \to 0} \left(\frac{7x}{4} \right) - \left(\lim_{X \to 0} \frac{\sin 4x}{4x} \right) \left(\lim_{X \to 0} \cos 9x \right) = 0 - (1)(1)$$

$$= \boxed{-1}$$

(c)
$$\lim_{t \to 6} \left(\frac{t-6}{t^2 - 12t + 36} \right) = \lim_{t \to 6} \frac{1}{t-6}$$

$$\lim_{t \to 6^-} \frac{1}{t-6} = -\infty$$

$$\lim_{t \to 6^+} \frac{1}{t-6} = +\infty$$

(d)
$$\lim_{x \to \pi} (4x^2 - x \tan x)$$

$$= 4\pi^2 - \pi TAN \pi = 4\pi^3$$

6. (5 points) The graph of the function f is shown below. Referring to this graph, arrange the following quantities in ascending order.

\$(2); \$(1);

\$(2); \$(1);

\$(2); \$(1);

\$(3);

\$(3);

- 7. (4 points) Indicate whether each statement is true or false.
 - (a) T If g is continuous at x = 3, then $\lim_{x \to 3^+} g(x) = g(3)$
 - (b) $\underline{\hspace{0.5cm}}$ If h has a limit at x=-1, then h is defined at x=-1.
 - (c) F If f and g are polynomials and g(6) = 0, then the graph of $\frac{f(x)}{g(x)}$ must have a vertical asymptote at x = 6.
 - (d) F If g is defined at x = 1, then g has a limit at x = 1.

- 8. (6 points) Sketch the graph of a function f such that
 - f is defined for all real numbers,
 - f(2) = 3,
 - f has a removable discontinuity at x = 2,
 - $\lim_{x \to 4^-} f(x) = \infty$, and
 - $\bullet \lim_{x \to 4^+} f(x) = 3.$

9. (10 points) Use basic differentiation rules (not the limit definition of derivative) to determine each derivative.

(a)
$$\frac{d}{dx} \left(9x^4 + 5 + \frac{2}{x^3} \right) = \frac{d}{dx} \left(9x^4 + 5 + 2x^{-3} \right)$$

= $36x^3 + 0 - 6x^{-4} = 36x^3 - \frac{6}{x^4}$

(b)
$$\frac{d}{dx} \left(\sqrt[3]{x} + 6x - \sqrt{7}\cos x + \sin x \right)$$

$$= \frac{d}{dx} \left(\sqrt[3]{3} + 6x - \sqrt{7} \cos x + 2\omega \times \right)$$

$$= \left(\frac{1}{3} \sqrt{-\frac{3}{3}} + 6 + \sqrt{7} \sin x + \cos x \right)$$

10. (7 points) Referring to the graph shown below, determine each of the following or explain why it does not exist.

(a)
$$\lim_{x \to 4} f(x) =$$

(b)
$$f'(1) = -$$
 (The slope AT $X = 1 \mid S - 1$)

(c)
$$\lim_{x \to 2^{-}} f(x) = \bigcirc$$

(d)
$$f(5) = 0$$

(e)
$$\lim_{x \to 2^+} f(x) = 3$$

(f) The x-coordinate of a point at which f'(x) > 0

(g) The x-coordinate of a point at which f'(x) = 0

11. (4 points) Using the definition of continuity as a guide, describe three reasons why a function may fail to be continuous at a point.

- Of(c) IS NOT DEFINED
- a lim f(x) DNE, OR x→c
- 3 $\lim_{x\to c} f(x) \neq f(c)$
- 12. (6 points) You attempted to evaluate a limit by direct substitution, but you came up with 0/0. State three different ways that you may be able to resolve your indeterminate form. Then give an example illustrating any one of your ways.

$$= \lim_{X \to 1} (X+1) = 3$$

eg
$$\lim_{X \to 0} \frac{(1+x)^2 - 1}{X} = \lim_{X \to 0} \frac{1+3x+x^2 - 1}{X}$$

$$= \lim_{X \to 0} \frac{3x+x^2}{X} = \lim_{X \to 0} (3+x)$$

3 USE
$$\frac{1}{X} \Rightarrow 0$$
 $\frac{S(N) \times X}{X} = 1$

eg
$$\lim_{X \to 0} \frac{\sin 3x}{X} = \lim_{X \to 0} \frac{\partial \sin 3x}{\partial x} = \partial \lim_{X \to 0} \frac{\sin 3x}{\partial x}$$

$$= \partial(1) = \partial$$