Math 171 - Test 1 Name kej

September 11, 2014 Score

Show all work to receive full credit. Supply explanations where necessary. When evaluating
limits, you may need to use +0o0, —oco, or DNE (does not exist).

1. (10 points) Referring to the graph shown below, determine each of the following or
explain why it does not exist. ’
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(a) lim f(z) = 3

(b) lm f(z) = QA

z—0"

(c) f(1) = 0.5

(d) lim f(z) = \
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2. (9 points) Determine whether each statement is true (T) or false (F).

(a) oo [ is defined at = = ¢, then lim f(z) exists.
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(d) T If lini f(z) = f(1), then f is continuous at = = 1.

(e) —F~ If im g(t) =2, then lim g(t) =2.  But Toue THe oTwz WAY ARoUnD
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(f) r If f and g are polynomials and g(6) = 0, then the graph of & must
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have a vertical asymptote at z = 6.

3. (6 points) Use a table of numerical values to approximate the following limit. Your
table must show function values at four or more points.
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4. (6 points) Is g continuous everywhere? Carefully explain your reasonin —
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5. (10 points) The table below gives values of the continuous functions f and ¢ at
selected points.
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(a) Find lim+ g(x).
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(b) Find lim g(f(z)).
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(c) Find f(3) if lim f(z) = 5.25.
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(d) Find the smallest interval on which you can be sure that the equation g(x) = 2.25
has at least one solution. Explain your reasoning.

= ! 8()(\: 2-99 Qomegwnazg OO ("QJ'\ ,
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(f) (Bonus: 2 points) What is the name of the theorem you used in part (d)?
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6. (24 points) Determine each limit analytically, or explain why the limit does not exist.
You may need to use +0o0, —oo, or DNE.
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Formal Definition of Limit: The statement lim f(z) = L means that for each
r—cC

€ > 0 there exists a § > 0 such that 0 < |z — ¢| < § implies that |f(z) — L] < e.

7. (6 points) Compute lim2 (2z — 2) and then, referring to the formal definition of limit,
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8. (5 points) Given that —z* < 2% cos — < z? for & # 0, compute lir% 22 cos —. Explain.
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9." (6 points) Use the fact that lim T to compute lim Stanzcos .
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10. (6 points) Sketch the graph of a function f such that

e f is defined for all real numbers between —5 and 5,
i f(—2) = 37
e f has a removable discontinuity at z = —2,

. Iilgl_ f(x) = o0, and
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12. (6 points) Explain why li_}ni Ixx __f[ fails to exist. Show work to justify your answer.
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