\qquad
\qquad

Show all work to receive full credit. Supply explanations when necessary.

1. (3 points) Find the area of the parallelogram determined by the vectors $\vec{u}=3 \hat{\imath}-5 \hat{\jmath}-2 \hat{k}$ and $\vec{v}=\hat{\imath}-4 \hat{\jmath}+2 \hat{k}$.
2. (2 points) Find a nonzero vector whose cross product with $\vec{w}=-\hat{\imath}-2 \hat{\jmath}+7 \hat{k}$ is the zero vector.
3. (3 points) Refer to the vectors \vec{u} and \vec{v} in problem \#1. Find the projection of \vec{u} onto \vec{v}.
4. (2 points) If \vec{u} is a nonzero vector such that $\vec{u} \cdot \vec{v}=\vec{u} \cdot \vec{w}$, must it be true that $\vec{v}=\vec{w}$? Explain your reasoning.
