\qquad Score \qquad

Show all work to receive full credit. Supply explanations where necessary.

1. (6 points) Find a vector of magnitude 7 that has the direction from $P(2,5,8)$ to $Q(-1,3,4)$.
2. (6 points) Let $\vec{u}=-5 \hat{\imath}+4 \hat{\jmath}-\hat{k}$.
(a) Find a vector, different from \vec{u}, that is parallel to \vec{u}. Give a one-sentence explanation of how you know.
(b) Find a nonzero vector that is orthogonal to \vec{u}. Give a one-sentence explanation of how you know.
3. (2 points) Without actually computing the cross product, use the right-hand rule to determine $\hat{k} \times \hat{\imath}$.
4. (6 points) Find a set of symmetric equations for the line passing through $(2,1,5)$ and parallel to the line with parametric equations $x=3+2 t, y=-6-t, z=7-5 t$.
5. (9 points) In the following problems, the force vectors \vec{F}_{1} and \vec{F}_{2} are 2D vectors in the $x y$-plane.
(a) The force \vec{F}_{1} has magnitude 3 and makes a 225° angle with the positive x-axis. Find the component form of \vec{F}_{1}.
(b) The force \vec{F}_{2} has component form $\vec{F}_{2}=5 \sqrt{3} \hat{\imath}+10 \hat{\jmath}$. Compute the resultant vector $\vec{F}=\vec{F}_{1}+\vec{F}_{2}$.
(c) What angle does \vec{F} make with the positive x-axis?
6. (4 points) The angle between \vec{u} and \vec{v} is obtuse. What can be said about $\vec{u} \cdot \vec{v}$? Briefly explain.
7. (6 points) Using the parameter $x=t$, find a vector-valued function (i.e., a set of parametric equations) that describes the curve of intersection of the surfaces $z=x^{2}+y^{2}$ and $x+y=0$.
8. (6 points) Find the distance from the point $P(7,1,-3)$ to the plane $4 x-2 y+z=5$.
9. (6 points) Find the projection of $\vec{w}=\hat{\imath}+4 \hat{\jmath}-3 \hat{k}$ onto $\vec{u}=7 \hat{\imath}+4 \hat{k}$.
10. (8 points) Find a set of parametric equations for a line in the plane $5 x-9 y-8 z=5$.
11. (7 points) Find the vector-valued function $\vec{r}(t)$ such that

$$
\vec{r}^{\prime}(t)=t e^{-t^{2}} \hat{\imath}-e^{-t} \hat{\jmath}+\hat{k} ; \quad \vec{r}(0)=\frac{1}{2} \hat{\imath}-\hat{\jmath}+2 \hat{k} .
$$

12. (6 points) Sketch the graph of the vector-valued function $\vec{r}(t)=t^{3} \hat{\imath}+t \hat{\jmath}$. Draw arrows on your graph to indicate the curve's orientation.
13. (10 points) Let $\vec{r}(t)=2 \cos t \hat{\imath}-e^{t} \hat{\jmath}+t^{2} \hat{k}$.
(a) Let $\vec{T}(t)=\frac{\vec{r}^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}$. Compute $\vec{T}(t)$.
(b) If you were forced to compute $\vec{T}(t) \cdot \vec{T}^{\prime}(t)$, what would you find? Explain.
14. (10 points) Let $\vec{u}=-2 \hat{\imath}+9 \hat{\jmath}+\hat{k}$ and $\vec{v}=\hat{\imath}-\hat{\jmath}+4 \hat{k}$.
(a) Find a vector orthogonal to both \vec{u} and \vec{v}.
(b) Find an equation of the plane passing through (5, 0,3) with normal vector is $\vec{u} \times \vec{v}$.
15. (8 points) A crystal structure has the form of a parallelepiped determined by the vectors $\vec{a}=\hat{\imath}+2 \hat{\jmath}+\hat{k}, \vec{b}=3 \hat{\jmath}+5 \hat{k}$, and $\vec{c}=-4 \hat{\imath}+2 \hat{\jmath}+\hat{k}$, where distances are measured in micrometers. Find the volume of the parallelepiped.

