\qquad
Score \qquad

Show all work to receive full credit. Supply explanations when necessary.

1. Let $a=1.1122 \times 10^{-5}$ and let $f(x)=\sqrt{x+2}-\sqrt{2}$. For each part of this problem use 5 -digit arithmetic with rounding. Use 3.9322×10^{-6} as the exact value of $f(a)$.
(a) Compute $f(a)$ and determine the relative error in your result.
(b) Rewrite $f(x)$ in a more appropriate form for evaluation when x is small.
(c) Use your new form to evaluate $f(a)$ and determine the relative error.
2. Let $p(x)=x^{4}+5 x^{3}+8 x^{2}-7 x+2$.
(a) Treating the powers as repeated multiplication, count the number of operations required to evaluate $p(2)$.
(b) Rewrite $p(x)$ in nested form.
(c) Using the nested form, how many operations are required to evaluate $p(2)$?
3. Consider the quadratic equation $x^{2}-26 x+1=0$.
(a) Find the exact solutions. Use your calculator to find the decimal form of each solution.
(b) Use the standard quadratic formula and 5-digit arithmetic with rounding to find the solutions. Compute the relative error in each.
(c) Use the improved quadratic formula and 5 -digit arithmetic with rounding to find the solutions. Compute the relative error in each.
