A differential equation is an equation containing one or more derivatives of an unknown function.

$$
\begin{gathered}
\frac{d P}{d t}=k P \\
m \frac{d^{2} x}{d t^{2}}=-m g \\
x y^{\prime}+y=e^{-x^{2}} \\
L \frac{d^{2} Q}{d t^{2}}+R \frac{d Q}{d t}+\frac{1}{C} Q=E
\end{gathered}
$$

To solve a differential equation means to find the unknown function(s).

If an equation involves the derivative of one variable with respect to another, then the former is the dependent variable and the latter is the independent variable.

A differential equation involving only ordinary derivatives with respect to a single independent variable is called an ordinary differential equation.

A differential equation involving partial derivatives with respect to more than one independent variable is called an partial differential equation.

Classify each equation.

$$
3 \frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+9 x=2 \cos 3 t
$$

$$
y^{\prime \prime}-y y^{\prime}=\tan x
$$

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0 \\
& \frac{d^{2} y}{d x^{2}}+3 x\left(\frac{d y}{d x}\right)^{2}=e^{x}
\end{aligned}
$$

$$
\frac{\partial w}{\partial x}-\frac{\partial w}{\partial y}=x-2 y
$$

$$
y^{\prime \prime}+y=x^{3}
$$

$$
\frac{d^{2} s}{d t^{2}}+s^{3}=0
$$

$x y d x+\left(x^{2}-y+3\right) d y=0$

The order of a differential equation is the order of the highest-order derivatives that appear in the equation.

An ordinary differential equation is linear if it can be written in the form

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=F(x),
$$

where the coefficient functions and the righthand side depend only on the independent variable x.

If an ordinary differential equation is not linear, it is called nonlinear.

Suppose you are given an ordinary differential equation with dependent variable y and independent variable x...

If the function $y=f(x)$ satisfies the differential equation for all x in an interval I, then $f(x)$ is called an explicit solution of the equation on I.

If a solution is defined on an interval I by an expression of the form $G(x, y)=0$, then the solution is called an implicit solution on I.

Furthermore, if an explicit solution involves only elementary functions, then it is a closed-form solution.
$P(t)=C e^{k t}$ is an explicit solution of

$$
\frac{d P}{d t}=k P
$$

$x y=c+\ln y$ is an implicit solution of

$$
y^{\prime}(1-x y)=y^{2} .
$$

An explicit solution of $x y^{\prime}+y=e^{-x^{2}}$ is

$$
y(x)=\frac{1}{x} \int_{0}^{x} e^{-t^{2}} d t+\frac{C}{x}
$$

but this solution is not closed-form.

An initial value problem for an nth order ordinary differential equation is a problem of finding a solution $y(x)$ that further satisfies n initial conditions of the form
$y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}$

For example,

$$
2 \ddot{z}+7 \dot{z}-4 z=0 ; \quad z(0)=0, \dot{z}(0)=9
$$

And its solution is

$$
z(t)=2 e^{t / 2}-2 e^{-4 t}
$$

Existence/Uniqueness

Suppose we are given the IVP

$$
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

If f and $\partial f / \partial y$ are continuous in a rectangle

$$
\{(x, y): a \leq x \leq b, c \leq y \leq d\}
$$

containing (x_{0}, y_{0}), then the IVP has a unique solution on the interval ($x_{0}-h, x_{0}+h$) for some positive number h.

Unfortunately, this result only tells us that the IVP has a unique solution in a neighborhood of x_{0}. We have no idea how big that neighborhood actually is.

If the DE has a special form, we may be able to say more.

A direction field or slope field for a differential equation is a plot of short line segments drawn at various points in the $x y$-plane showing the slopes of the solution curves at those points.

